
NFReducer: Redundant Logic Elimination for
Network Functions with Runtime Configurations

Bangwen Deng, Wenfei Wu
Tsinghua University

Background: Network Function Virtualization (NFV)

Firewall DPI Monitor

IDS NAT

NFV

*Figure from ETSI

Proprietary software and hardware General software deployed in commodity
servers or virtual machines

NFV

Background: Network Function Virtualization (NFV)

Firewall DPI Monitor

IDS NAT

NFV

*Figure from ETSI

General software deployed in commodity
servers or virtual machines

NFV

Core

Proprietary software and hardware

Background: Network Functions

• Critical components in modern network

• Growing impact:
• Various network scenarios
• Diverse functions (e.g. , Firewall, NAT, IDS, Load Balancer)

Background: Network Functions

• NF’s efficiency in flow processing is critical:
• Affects network’s end-to-end performance in a significant way

(e.g., latency accumulation, throughput bottleneck)

• DevOps concept introduces more NF optimization space.

• Critical components in modern network

• Growing impact:
• Various network scenarios
• Diverse functions (e.g. , Firewall, NAT, IDS, Load Balancer)

Outline

• Background
•Motivation and Objective
• NFReducer Design and Implementation
• Evaluation
• Conclusion and Future work

• Unused Logic: mismatch of the protocol space in development
and deployment.
• Covering a large protocol space in development
• Configuring a subspace of the entire protocol space in deployment

Whole Protocol Space

Motivation: Three Types of Redundancy in NF

Rules:
drop tcp 10.0.0.0/24 any −>
10.1.0.0/24 any

……
……

Whole Protocol Space

Subspace

• Unused Logic: mismatch of the protocol space in development
and deployment.
• Covering a large protocol space in development
• Configuring a subspace of the entire protocol space in deployment

Motivation: Three Types of Redundancy in NF

Motivation: Three Types of Redundancy in NF

Monitor IDS

Ingress flows Egress flows

Monitor and IDS in a chain share similar packet parsing logic

• Unused Logic: mismatch of the protocol space in development
and deployment.

• Duplicated Logic: duplicated operations in NFs of an NF chain.

Motivation: Three Types of Redundancy in NF

Monitor IDS

Ingress flows Egress flows

Block UDP packetsUDP packets processing is redundant

• Unused Logic: mismatch of the protocol space in development
and deployment.

• Duplicated Logic: duplicated operations in NFs of an NF chain.
• Overwritten Logic: overwritten actions between NFs in an NF

chain.

Goal: Identify and eliminate redundant logic in NFs and NF chains
with the operation-time configurations.

NFReducer

Objective

• Unused Logic: mismatch of the protocol space in development
and deployment.

• Duplicated Logic: duplicated operations in NFs of an NF chain.
• Overwritten Logic: overwritten actions between NFs in an NF

chain.

Snort IDS Code(Simplified)

Snort IDS Code(Simplified)

Parsing

Snort IDS Code(Simplified)

Parsing Match

Snort IDS Code(Simplified)

Parsing Match Action

Unused Logic: Unused layer parsing

• Example

IP address (L3)
Port (L4)

Parsing

Pkt.IP == Rule.IP
Pkt.Port == Rule.Port

Match

Drop
Pass

Action

Unused Logic: Unused layer parsing

• Example

IP address (L3)
Port (L4)

Parsing

Pkt.IP == Rule.IP
Pkt.Port == Rule.Port

Match

Drop
Pass

Action

What if only L3 header is used? E.g., <10.0.0.1->*, s/d port=*, drop>

Unused Logic: Unused layer parsing

• Example

IP address (L3)
Port (L4)

Parsing

Pkt.IP == Rule.IP
Pkt.Port == Rule.Port

Match

Drop
Pass

Action

What if only L3 header is used? E.g., <10.0.0.1->*, s/d port=*, drop>

Wildcard

Always True

Unused Logic: Unused layer parsing

• Example

IP address (L3)
Port (L4)

Parsing

Pkt.IP == Rule.IP
Pkt.Port == Rule.Port

Match

Drop
Pass

Action

What if only L3 header is used? E.g., <10.0.0.1->*, s/d port=*, drop>

Wildcard

Always True

Unused

Unused layer parsing: Method to Solve

IP address (L3)

Parsing

Pkt.IP == Rule.IP

Match

Drop
Pass

Action

<10.0.0.1->*, s/d port=*, drop>

• Apply Rules

Pkt.Port == *Port (L4)

Unused layer parsing: Method to Solve

IP address (L3)

Parsing

Pkt.IP == Rule.IP

Match

Drop
Pass

Action

<10.0.0.1->*, s/d port=*, drop>

• Apply Rules

• Constant Folding and Propagation

TruePort (L4)

Unused layer parsing: Method to Solve

IP address (L3)

Parsing

Pkt.IP == Rule.IP

Match

Drop
Pass

Action

<10.0.0.1->*, s/d port=*, drop>

• Apply Rules

• Constant Folding and Propagation

• Dead Code Elimination

TruePort (L4)Port (L4)

Unused Logic: Unused Protocol (Branch) Parsing

• Branches in Parse and Match

IP Parsing

TCP
Parsing

UDP
Parsing

Proto==UDPProto==TCP

Parsing

IP

TCP UDP

Proto==UDPProto==TCP

Match

If NF processes TCP packets only, E.g., <10.0.0.0/24, tcp, 80, drop>

Port==80 Port!=80

drop pass
Port==*

pass

Unused Logic: Unused Protocol (Branch) Parsing

• Branches in Parse and Match

IP Parsing

TCP
Parsing

UDP
Parsing

Proto==UDPProto==TCP

Parsing

IP

TCP UDP

Proto==UDPProto==TCP

Match

If NF processes TCP packets only, E.g., <10.0.0.0/24, tcp, 80, drop>

True Always False

Port==80 Port!=80

drop pass
Port==*

pass

Unused Logic: Unused Protocol (Branch) Parsing

• Branches in Parse and Match

IP Parsing

TCP
Parsing

UDP
Parsing

Proto==UDPProto==TCP

Parsing

IP

TCP UDP

Proto==UDPProto==TCP

Match

If NF processes TCP packets only, E.g., <10.0.0.0/24, tcp, 80, drop>

True Always False

Redundant
Logic

Port==80 Port!=80

drop pass
Port==*

pass

Unused Protocol Parsing : Method to Solve

• Extract Feasible Execution Path

IP Parsing

TCP
Parsing

UDP
Parsing

Proto==UDPProto==TCP

Parse

IP

TCP UDP

Proto==UDPProto==TCP

Match

Port==80 Port!=80

drop pass
Port==*

pass

Unused Protocol Parsing : Method to Solve

• Extract Feasible Execution Path

• Constant Folding and Propagation

IP Parsing

TCP
Parsing

UDP
Parsing

Proto==UDPProto==TCP

Parse

IP

TCP UDP

Proto==TCP

Match

Port==80 Port!=80

drop pass
Port==*

pass

False

Unused Protocol Parsing : Method to Solve

• Extract Feasible Execution Path

• Constant Folding and Propagation

• Dead Code Elimination

IP Parsing

TCP
Parsing

UDP
Parsing

Proto==UDPProto==TCP

Parse

IP

TCP UDP

Proto==TCP

Match

Port==80 Port!=80

drop pass
Port==*

pass

FalseDead Code Dead Code

Unused Protocol Parsing : Method to Solve

• Extract Feasible Execution Path

• Constant Folding and Propagation

• Dead Code Elimination

IP Parsing

TCP
Parsing

Proto==UDPProto==TCP

Parse

IP

TCP

Proto==TCP

Match

Port==80 Port!=80

drop pass

False

Cross-NF Redundancy: Duplicated Logic
• If monitor and IDS in a chain share similar packet parsing logic.

Parsing
+

Monitoring

Parsing
+

Rules matching
logic

Packets Packets outPackets in

Cross-NF Redundancy: Duplicated Logic
• If monitor and IDS in a chain share similar packet parsing logic.

Parsing
+

Monitoring

Parsing
+

Rules matching
logic

Packets Packets outPackets in

The double packet “parsing” is duplicated redundant logic.

Duplicated Logic: Method to Solve
• The double packet “parsing” is duplicated redundant logic.
• Consolidate to solve:
• Splice the code

First Parsing
Second Parsing

+
Monitoring

Rules matching logic

Packets outPackets in

Duplicated Logic: Method to Solve
• The double packet “parsing” is duplicated redundant logic.
• Consolidate to solve:
• Splice the code
• Common subexpression elimination & copy propagation
• Dead code elimination

First Parsing
Second Parsing

+
Monitoring

Rules matching logic

Packets outPackets in

Cross-NF Redundancy: Overwritten Logic
• Two firewall instances are chained together in the setting that two

operators manage their rules independently or with priority.

Cross-NF Redundancy: Overwritten Logic
• If firewall instance 1 lets all UDP packets get through, but firewall

instance 2 blocks all UDP packets, all work in firewall 1 that is done
to UDP becomes redundant.

Parsing
+

Process UDP
Process others

Parsing
+

Drop UDP
Process others

Packets Packets outPackets in

FW1 FW2

Parsing
+

Process(UDP)
Pass(UDP)

Process(others)
Pass(others)

Parsing
+

Drop(UDP)
Process(others)

Pass(others)

Cross-NF Redundancy: Overwritten Logic
• If firewall instance 1 lets all UDP packets get through, but firewall

instance 2 blocks all UDP packets, all work in firewall 1 that is done
to UDP becomes redundant.

Parsing
+

Process(UDP)
Pass(UDP)

Process(others)
Pass(others)

Parsing
+

Drop(UDP)
Process(others)

Pass(others)

Packets Packets outPackets in

The overlapping conflict actions for UDP packets is overwritten redundant logic.

Overwritten Logic: Method to Solve
• The overlapping conflict actions for specific packets is overwritten

redundant logic.
• To solve:
• Consolidate

Packets outPackets in

Parsing once
+

Process(UDP)
Pass(UDP)
Drop(UDP)

Process(others)
Pass(others)

Parsing once
+

Process(UDP)
Pass(UDP)
Drop(UDP)

Process(others)
Pass(others)

Overwritten Logic: Method to Solve
• The overlapping conflict actions for specific packets is overwritten

redundant logic.
• To solve:
• Consolidate
• Check and label chain actions

Packets outPackets in

Labelled as ”LHS”, not used.

Overwritten Logic: Method to Solve
• The overlapping conflict actions for specific packets is overwritten

redundant logic.
• To solve:
• Consolidate
• Check and label chain actions
• Dead Code Elimination

Packets outPackets in

Parsing once
+

Process(UDP)
Pass(UDP)
Drop(UDP)

Process(others)
Pass(others)

Outline

• Background
•Motivation and Objective
• NFReducer Design and Implementation
• Evaluation
• Conclusion and Future work

NFReducer Workflow

• Input:
• NF program source code
• Runtime configurations
• NF chain information

• Output: The optimized NF program

NFReducer Workflow

• Labeling Critical Variables and Actions

NFReducer Workflow

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

NFReducer Workflow

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic

• Labeling Critical Variables and Actions

• Critical Variables
• Packet Variables: Holding the packet raw data.
• State Variables: Maintaining the NF states. (e.g., counter)
• Config Variables: Maintaining the config info. (e.g., rules)

• NF Actions:
• External Actions (e.g., replying, forward, drop packets)
• Internal Actions (e.g., updating state variables)

NFReducer Workflow

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic
• Removing functionalities unrelated to packet processing (e.g., log).
• Facilitate the compiler techniques applied later (e.g., symbolic

execution).

Labeled Variables
&& Actions

Source code
Packet Processing

LogicProgram Slicer

NFReducer Workflow

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic
• Unused Logic Elimination
• Apply Configs
• Extract Paths

Packet Processing
Logic

Configured
Rules

Apply Configs &
Extract Paths

Path1 Path2 … …

Constant Folding & Propagation

… …

Check path feasibility

… …

Dead Code Elimination & Merge

Optimized Code

NFReducer Workflow

Constant Folding & Propagation

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic
• Unused Logic Elimination
• Apply Configs
• Extract Paths
• Constant Folding and Propagation
• Check Path Feasibility
• Dead Code Elimination

NFReducer Workflow Packet Processing
Logic

Configured
Rules

Apply Configs &
Extract Paths

Path1 Path2 … …

Constant Folding & Propagation

… …

Check path feasibility

… …

Dead Code Elimination & Merge

Optimized Code

NF1 NF2

Splice

NFReducer Workflow

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic
• Unused Logic Elimination
• Duplicated Logic Elimination
• Splice

Common subexpression elimination
& Copy propagation

Dead Code Elimination

Consolidated Code

NF1 NF2

Splice

NFReducer Workflow

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic
• Unused Logic Elimination
• Duplicated Logic Elimination
• Splice
• Common subexpression elimination

& copy propagation
• Dead code elimination

Common subexpression elimination
& Copy propagation

Dead Code Elimination

Consolidated Code

Optimized NF

NFReducer Workflow

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic
• Unused Logic Elimination
• Duplicated Logic Elimination
• Overwritten Logic Elimination
• Consolidate

NF1 NF2

Consolidate

Check and label chain actions

Dead Code Elimination

Dead Code Elimination

Check and label chain actions

NFReducer Workflow

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic
• Unused Logic Elimination
• Duplicated Logic Elimination
• Overwritten Logic Elimination
• Consolidate
• Check and label chain actions
• Dead Code Elimination

Optimized NF

NF1 NF2

Consolidate

Implementation

LLVM DG Static Slicer

Outline

• Background
•Motivation and Objective
• NFReducer Design and Implementation
• Evaluation
• Conclusion and Future work

Evaluation: Experimental Setup

• Benchmarks
• Snort IDS
• Suricata IDS/IPS
• Firewall in OpenNetVM platform

• Evaluation Indicators
• End-to-end performance gain:
• Throughput (packet per second)

• Overhead
• Time for program analysis and optimization

64 128 256 512 1024 1500
Packet Size(bytes)

0

2

4

6

8

10

T
hr

ou
gh

pu
t(

M
pp

s) Original Optimized

64 128 256 512 1024 1500
Packet Size(bytes)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Th
ro

ug
hp

ut
(M

pp
s) Original Optimized

64 128 256 512 1024 1500
Packet Size(bytes)

0

500

1000

1500

2000

2500

3000

Th
ro

ug
hp

ut
(K

pp
s) Original(Single-thread)

Optimized(Single-thread)

Original(Multithread)

Optimized(Multithread)

• Setting: Configured with layer-3 rules.

• Increase by nearly 15% for Snort, by 15% to 10X for Suricata (single thread),
and by 21% for OpenNetVM-Firewall

• Suricata is more significant
• inspects packets deeper in payload than Snort and OpenNetVM-FW.

Evaluation: Eliminating unused layer logic

Throughput of Snort Throughput of Suricata Throughput of OpenNetVM-FW

64 128 256 512 1024 1500
Packet Size(bytes)

0

2

4

6

8

10

T
hr

ou
gh

pu
t(

M
pp

s) Original Optimized

64 128 256 512 1024 1500
Packet Size(bytes)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Th
ro

ug
hp

ut
(M

pp
s) Original Optimized

64 128 256 512 1024 1500
Packet Size(bytes)

0

500

1000

1500

2000

2500

3000

Th
ro

ug
hp

ut
(K

pp
s) Original(Single-thread)

Optimized(Single-thread)

Original(Multithread)

Optimized(Multithread)

Evaluation: Eliminating unused layer logic

Throughput of Snort Throughput of Suricata Throughput of OpenNetVM-FW

• Setting: Configured with layer-3 rules.

• Increase by nearly 15% for Snort, by 15% to 10X for Suricata (single thread),
and by 21% for OpenNetVM-Firewall

• Suricata is more significant
• inspects packets deeper in payload than Snort and OpenNetVM-FW.

64 128 256 512 1024 1500
Packet Size(bytes)

0

2

4

6

8

10

T
hr

ou
gh

pu
t(

M
pp

s) Original Optimized

64 128 256 512 1024 1500
Packet Size(bytes)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Th
ro

ug
hp

ut
(M

pp
s) Original Optimized

64 128 256 512 1024 1500
Packet Size(bytes)

0

500

1000

1500

2000

2500

3000

Th
ro

ug
hp

ut
(K

pp
s) Original(Single-thread)

Optimized(Single-thread)

Original(Multithread)

Optimized(Multithread)

Evaluation: Eliminating unused layer logic

Throughput of Snort Throughput of Suricata Throughput of OpenNetVM-FW

• Setting: Configured with layer-3 rules.

• Increase by nearly 15% for Snort, by 15% to 10X for Suricata (single thread),
and by 21% for OpenNetVM-Firewall

• Suricata is more significant
• inspects packets deeper in payload than Snort and OpenNetVM-FW.

64 128 256 512 1024 1500
Packet Size(bytes)

0

2

4

6

8

10

T
hr

ou
gh

pu
t(

M
pp

s) Original Optimized

64 128 256 512 1024 1500
Packet Size(bytes)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Th
ro

ug
hp

ut
(M

pp
s) Original Optimized

64 128 256 512 1024 1500
Packet Size(bytes)

0

500

1000

1500

2000

2500

3000

Th
ro

ug
hp

ut
(K

pp
s) Original(Single-thread)

Optimized(Single-thread)

Original(Multithread)

Optimized(Multithread)

Evaluation: Eliminating unused layer logic

Throughput of Snort Throughput of Suricata Throughput of OpenNetVM-FW

• Setting: Configured with layer-3 rules.

• Increase by nearly 15% for Snort, by 15% to 10X for Suricata (single thread),
and by 21% for OpenNetVM-Firewall

• Suricata is more significant
• inspects packets deeper in payload than Snort and OpenNetVM-FW.

64 128 256 512 1024 1500
Packet Size(bytes)

0

2

4

6

8

10

T
hr

ou
gh

pu
t(

M
pp

s) Original Optimized

64 128 256 512 1024 1500
Packet Size(bytes)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Th
ro

ug
hp

ut
(M

pp
s) Original Optimized

64 128 256 512 1024 1500
Packet Size(bytes)

0

500

1000

1500

2000

2500

3000

Th
ro

ug
hp

ut
(K

pp
s) Original(Single-thread)

Optimized(Single-thread)

Original(Multithread)

Optimized(Multithread)

Evaluation: Eliminating unused layer logic

Throughput of Snort Throughput of Suricata Throughput of OpenNetVM-FW

• Setting: Configured with layer-3 rules.

• Increase by nearly 15% for Snort, by 15% to 10X for Suricata (single thread),
and by 21% for OpenNetVM-Firewall

• Suricata is more significant
• inspects packets deeper in payload than Snort and OpenNetVM-FW.

0 10 20 30 40 50
UDP Packets Proportion(%)

0

200

400

600

800

1000

Th
ro

ug
hp

ut
(K

pp
s) Original Optimized(Single-thread)

0 10 20 30 40 50
UDP Packets Proportion(%)

0

1

2

3

4

5

Th
ro

ug
hp

ut
(M

pp
s) Original Optimized

0 10 20 30 40 50
UDP Packets Proportion(%)

0

2

4

6

8

10

T
hr

ou
gh

pu
t(

M
pp

s) Original Optimized

Throughput of Snort Throughput of Suricata Throughput of OpenNetVM-FW

Evaluation: Eliminating unused protocol logic

• Setting: Configured with TCP rules only.

• The larger proportion of UDP packets, the larger performance gain.

• 40% performance gain for Snort, 2.5× for Suricata,
and 6.8% for OpenNetVM Firewall

0 10 20 30 40 50
UDP Packets Proportion(%)

0

200

400

600

800

1000

Th
ro

ug
hp

ut
(K

pp
s) Original Optimized(Single-thread)

0 10 20 30 40 50
UDP Packets Proportion(%)

0

1

2

3

4

5

Th
ro

ug
hp

ut
(M

pp
s) Original Optimized

0 10 20 30 40 50
UDP Packets Proportion(%)

0

2

4

6

8

10

T
hr

ou
gh

pu
t(

M
pp

s) Original Optimized

Throughput of Snort Throughput of Suricata Throughput of OpenNetVM-FW

Evaluation: Eliminating unused protocol logic

• Setting: Configured with TCP rules only.

• The larger proportion of UDP packets, the larger performance gain.

• 40% performance gain for Snort, 2.5× for Suricata,
and 6.8% for OpenNetVM Firewall

Evaluation: Eliminating Duplicated
and Overwritten Logic

• Setting:
• Mon—Snort: executed in two processes
• Mon+Snort: directly spliced
• Mon+Snort-Con: consolidated
• Mon+Snort-Opt: consolidated and

optimized
• Configured with TCP rules only for

Snort

0 10 20 30 40 50
UDP Packets Proportion(%)

0

2

4

6

8

10

Th
ro

ug
hp

ut
(M

pp
s) Mon–Snort

Mon+Snort
Mon+Snort-Con
Mon+Snort-Opt

• Setting:
• Mon—Snort: executed in two processes
• Mon+Snort: directly spliced
• Mon+Snort-Con: consolidated
• Mon+Snort-Opt: consolidated and

optimized
• Configured with TCP rules only for

Snort

• Consolidation and Redundancy
Elimination help improve:
• By more than 30%

• Performance gain increases as the UDP
proportion increases.

0 10 20 30 40 50
UDP Packets Proportion(%)

0

2

4

6

8

10

Th
ro

ug
hp

ut
(M

pp
s) Mon–Snort

Mon+Snort
Mon+Snort-Con
Mon+Snort-Opt

Evaluation: Eliminating Duplicated
and Overwritten Logic

0 10 20 30 40 50
UDP Packets Proportion(%)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Th
ro

ug
hp

ut
(M

pp
s) Fw–Fw

Fw+Fw
Fw+Fw-Con
Fw+Fw-Opt

Evaluation: Eliminating Duplicated
and Overwritten Logic

• Setting:
• Fw—Fw: executed in two processes
• Fw + Fw : directly spliced
• Fw + Fw -Con: consolidated
• Fw + Fw -Opt: consolidated and

optimized
• Configured with TCP rules only for latter

Firewall instance

0 10 20 30 40 50
UDP Packets Proportion(%)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Th
ro

ug
hp

ut
(M

pp
s) Fw–Fw

Fw+Fw
Fw+Fw-Con
Fw+Fw-Opt

Evaluation: Eliminating Duplicated
and Overwritten Logic

• Setting:
• Fw—Fw: executed in two processes
• Fw + Fw : directly spliced
• Fw + Fw -Con: consolidated
• Fw + Fw -Opt: consolidated and

optimized
• Configured with TCP rules only for latter

Firewall instance

• Consolidation and Redundancy
Elimination help improve:
• By more than 60%

• Performance gain increases as the UDP
proportion increases.

Evaluation: Overhead
• Labeling Variables and Actions:
• Operator-involved
• Once for an NF

of Identified Critical Variables in Benchmarks

Evaluation: Overhead
• Labeling Variables and Actions
• Optimization Overhead

Optimization Overhead

Outline

• Background
•Motivation and Objective
• NFReducer Design and Implementation
• Evaluation
• Conclusion

Conclusion

• We show the existence of three types of redundant logic in NFs.
• We design tool named NFReducer to eliminate the redundant

logic.
• Using runtime configurations
• Applying program analysis methods and compiler techniques.

• We evaluate NFReducer on commodity NFs and platform NFs
• The performance gain is obvious
• The overhead is acceptable

Thanks and Q&A!

dbw18@mails.tsinghua.edu.cn

Scope of Usage

• NFs that process a larger protocol space could be benefited
significantly.
• e.g., IDSes, firewalls, and Deep Packet Inspectors (DPI)

• NFs that process a single protocol could benefit less
• E.g., TCP load balancer, HTTP cache

• In DevOps scenarios
• Each NF category contains many different NF variants
• Many NFs synthesize several functionalities
• One NF would be deployed as many instances

