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Background: Network Functions
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• Various network scenarios
• Diverse functions (e.g. , Firewall, NAT, IDS, Load Balancer)



Background: Network Functions

• NF’s efficiency in flow processing is critical:
• Affects network’s end-to-end performance in a significant way 

(e.g., latency accumulation, throughput bottleneck )

• DevOps concept introduces more NF optimization space.

• Critical components in modern network 

• Growing impact:
• Various network scenarios
• Diverse functions (e.g. , Firewall, NAT, IDS, Load Balancer)



Outline

• Background
•Motivation and Objective
• NFReducer Design and Implementation
• Evaluation
• Conclusion and Future work



• Unused Logic: mismatch of the protocol space in development 
and deployment.
• Covering a large protocol space in development
• Configuring a subspace of the entire protocol space in deployment

Whole Protocol Space

Motivation: Three Types of Redundancy in NF



Rules:
drop tcp 10.0.0.0/24 any −> 
10.1.0.0/24 any 

……
……

Whole Protocol Space

Subspace

• Unused Logic: mismatch of the protocol space in development 
and deployment. 
• Covering a large protocol space in development
• Configuring a subspace of the entire protocol space in deployment

Motivation: Three Types of Redundancy in NF



Motivation: Three Types of Redundancy in NF

Monitor IDS

Ingress flows Egress flows

Monitor and IDS in a chain share similar packet parsing logic

• Unused Logic: mismatch of the protocol space in development 
and deployment. 

• Duplicated Logic: duplicated operations in NFs of an NF chain.



Motivation: Three Types of Redundancy in NF

Monitor IDS

Ingress flows Egress flows

Block UDP packetsUDP packets processing is redundant

• Unused Logic: mismatch of the protocol space in development 
and deployment. 

• Duplicated Logic: duplicated operations in NFs of an NF chain.
• Overwritten Logic: overwritten actions between NFs in an NF

chain.



Goal: Identify and eliminate redundant logic in NFs and NF chains 
with the operation-time configurations. 

NFReducer

Objective

• Unused Logic: mismatch of the protocol space in development 
and deployment. 

• Duplicated Logic: duplicated operations in NFs of an NF chain.
• Overwritten Logic: overwritten actions between NFs in an NF

chain.
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Snort IDS Code(Simplified)

Parsing Match Action
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Unused Logic: Unused layer parsing

• Example

IP address (L3)
Port (L4)

Parsing

Pkt.IP == Rule.IP
Pkt.Port == Rule.Port

Match

Drop
Pass

Action

What if only L3 header is used? E.g., <10.0.0.1->*, s/d port=*, drop>

Wildcard

Always True

Unused



Unused layer parsing: Method to Solve

IP address (L3)

Parsing

Pkt.IP == Rule.IP

Match

Drop
Pass

Action

<10.0.0.1->*, s/d port=*, drop>

• Apply Rules

Pkt.Port == *Port (L4)
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Unused layer parsing: Method to Solve

IP address (L3)

Parsing

Pkt.IP == Rule.IP

Match

Drop
Pass

Action

<10.0.0.1->*, s/d port=*, drop>

• Apply Rules

• Constant Folding and Propagation

• Dead Code Elimination

TruePort (L4)Port (L4)



Unused Logic: Unused Protocol (Branch) Parsing
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If NF processes TCP packets only, E.g., <10.0.0.0/24, tcp, 80, drop>

Port==80 Port!=80

drop pass
Port==*

pass
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Unused Logic: Unused Protocol (Branch) Parsing

• Branches in Parse and Match

IP Parsing

TCP
Parsing

UDP
Parsing

Proto==UDPProto==TCP

Parsing

IP

TCP UDP

Proto==UDPProto==TCP

Match

If NF processes TCP packets only, E.g., <10.0.0.0/24, tcp, 80, drop>

True Always False

Redundant
Logic

Port==80 Port!=80

drop pass
Port==*

pass



Unused Protocol Parsing : Method to Solve

• Extract Feasible Execution Path
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Unused Protocol Parsing : Method to Solve

• Extract Feasible Execution Path

• Constant Folding and Propagation

IP Parsing

TCP
Parsing

UDP
Parsing

Proto==UDPProto==TCP

Parse

IP

TCP UDP

Proto==TCP

Match

Port==80 Port!=80

drop pass
Port==*

pass
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Unused Protocol Parsing : Method to Solve

• Extract Feasible Execution Path

• Constant Folding and Propagation

• Dead Code Elimination

IP Parsing

TCP
Parsing

UDP
Parsing

Proto==UDPProto==TCP

Parse

IP

TCP UDP

Proto==TCP

Match

Port==80 Port!=80

drop pass
Port==*

pass

FalseDead Code Dead Code



Unused Protocol Parsing : Method to Solve

• Extract Feasible Execution Path

• Constant Folding and Propagation

• Dead Code Elimination

IP Parsing

TCP
Parsing

Proto==UDPProto==TCP

Parse

IP

TCP

Proto==TCP

Match

Port==80 Port!=80

drop pass

False
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Cross-NF Redundancy: Duplicated Logic
• If monitor and IDS in a chain share similar packet parsing logic.

Parsing
+

Monitoring

Parsing
+

Rules matching
logic

Packets Packets outPackets in

The double packet “parsing” is duplicated redundant logic. 



Duplicated Logic: Method to Solve
• The double packet “parsing” is duplicated redundant logic.
• Consolidate to solve:
• Splice the code

First Parsing
Second Parsing

+
Monitoring

Rules matching logic

Packets outPackets in



Duplicated Logic: Method to Solve
• The double packet “parsing” is duplicated redundant logic.
• Consolidate to solve:
• Splice the code
• Common subexpression elimination & copy propagation
• Dead code elimination

First Parsing
Second Parsing

+
Monitoring

Rules matching logic

Packets outPackets in



Cross-NF Redundancy: Overwritten Logic
• Two firewall instances are chained together in the setting that two

operators manage their rules independently or with priority.



Cross-NF Redundancy: Overwritten Logic
• If firewall instance 1 lets all UDP packets get through, but firewall 

instance 2 blocks all UDP packets, all work in firewall 1 that is done 
to UDP becomes redundant. 

Parsing
+

Process UDP
Process others

Parsing
+

Drop UDP
Process others

Packets Packets outPackets in

FW1 FW2

Parsing
+

Process(UDP)
Pass(UDP)

Process(others)
Pass(others)

Parsing
+

Drop(UDP)
Process(others)

Pass(others)



Cross-NF Redundancy: Overwritten Logic
• If firewall instance 1 lets all UDP packets get through, but firewall 

instance 2 blocks all UDP packets, all work in firewall 1 that is done 
to UDP becomes redundant. 

Parsing
+

Process(UDP)
Pass(UDP)

Process(others)
Pass(others)

Parsing
+

Drop(UDP)
Process(others)

Pass(others)

Packets Packets outPackets in

The  overlapping conflict actions for UDP packets is overwritten redundant logic. 



Overwritten Logic: Method to Solve
• The  overlapping conflict actions for specific packets is overwritten

redundant logic. 
• To solve:
• Consolidate

Packets outPackets in

Parsing once
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Process(UDP)
Pass(UDP)
Drop(UDP)
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Parsing once
+

Process(UDP)
Pass(UDP)
Drop(UDP)

Process(others)
Pass(others)

Overwritten Logic: Method to Solve
• The  overlapping conflict actions for specific packets is overwritten

redundant logic. 
• To solve:
• Consolidate
• Check and label chain actions

Packets outPackets in

Labelled as ”LHS”, not used.



Overwritten Logic: Method to Solve
• The  overlapping conflict actions for specific packets is overwritten

redundant logic. 
• To solve:
• Consolidate
• Check and label chain actions
• Dead Code Elimination

Packets outPackets in

Parsing once
+

Process(UDP)
Pass(UDP)
Drop(UDP)

Process(others)
Pass(others)
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• Background
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• NFReducer Design and Implementation
• Evaluation
• Conclusion and Future work



NFReducer Workflow

• Input:
• NF program source code
• Runtime configurations
• NF chain information

• Output: The optimized NF program



NFReducer Workflow

• Labeling Critical Variables and Actions
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NFReducer Workflow

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic



• Labeling Critical Variables and Actions

• Critical Variables
• Packet Variables: Holding the packet raw data.
• State Variables: Maintaining the NF states. (e.g., counter)
• Config Variables: Maintaining the config info. (e.g., rules)

• NF Actions:
• External Actions (e.g., replying, forward, drop packets)
• Internal Actions (e.g., updating state variables)

NFReducer Workflow



• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic
• Removing functionalities unrelated to packet processing (e.g., log).
• Facilitate the compiler techniques applied later (e.g., symbolic 

execution).

Labeled Variables
&& Actions

Source code
Packet Processing 

LogicProgram Slicer

NFReducer Workflow



• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic
• Unused Logic Elimination
• Apply Configs
• Extract Paths

Packet Processing 
Logic

Configured
Rules

Apply Configs &
Extract Paths

Path1 Path2 … …

Constant Folding & Propagation

… …

Check path feasibility

… …

Dead Code Elimination & Merge

Optimized Code

NFReducer Workflow



Constant Folding & Propagation

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic
• Unused Logic Elimination
• Apply Configs
• Extract Paths
• Constant Folding and Propagation
• Check Path Feasibility
• Dead Code Elimination

NFReducer Workflow Packet Processing 
Logic

Configured
Rules

Apply Configs &
Extract Paths

Path1 Path2 … …

Constant Folding & Propagation

… …

Check path feasibility

… …

Dead Code Elimination & Merge

Optimized Code
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NFReducer Workflow

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic
• Unused Logic Elimination
• Duplicated Logic Elimination
• Splice

Common subexpression elimination
& Copy propagation 

Dead Code Elimination

Consolidated Code



NF1 NF2

Splice

NFReducer Workflow

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic
• Unused Logic Elimination
• Duplicated Logic Elimination
• Splice
• Common subexpression elimination

& copy propagation
• Dead code elimination

Common subexpression elimination
& Copy propagation 

Dead Code Elimination

Consolidated Code



Optimized NF

NFReducer Workflow

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic
• Unused Logic Elimination
• Duplicated Logic Elimination
• Overwritten Logic Elimination
• Consolidate

NF1 NF2

Consolidate

Check and label chain actions

Dead Code Elimination



Dead Code Elimination

Check and label chain actions

NFReducer Workflow

• Labeling Critical Variables and Actions

• Extracting Packet Processing Logic

• Eliminating Redundant Logic
• Unused Logic Elimination
• Duplicated Logic Elimination
• Overwritten Logic Elimination
• Consolidate
• Check and label chain actions
• Dead Code Elimination

Optimized NF

NF1 NF2

Consolidate



Implementation

LLVM DG Static Slicer
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Evaluation: Experimental Setup

• Benchmarks
• Snort IDS
• Suricata IDS/IPS
• Firewall in OpenNetVM platform

• Evaluation Indicators
• End-to-end performance gain:
• Throughput (packet per second)

• Overhead
• Time for program analysis and optimization
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• Setting: Configured with layer-3 rules. 

• Increase by nearly 15% for Snort, by 15% to 10X for Suricata (single thread),
and by 21% for OpenNetVM-Firewall 

• Suricata is more significant
• inspects packets deeper in payload than Snort and OpenNetVM-FW.

Evaluation: Eliminating unused layer logic

Throughput of Snort Throughput of Suricata Throughput of OpenNetVM-FW
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Throughput of Snort Throughput of Suricata Throughput of OpenNetVM-FW

• Setting: Configured with layer-3 rules. 

• Increase by nearly 15% for Snort, by 15% to 10X for Suricata (single thread),
and by 21% for OpenNetVM-Firewall 

• Suricata is more significant
• inspects packets deeper in payload than Snort and OpenNetVM-FW.
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• Setting: Configured with layer-3 rules. 

• Increase by nearly 15% for Snort, by 15% to 10X for Suricata (single thread),
and by 21% for OpenNetVM-Firewall 

• Suricata is more significant
• inspects packets deeper in payload than Snort and OpenNetVM-FW.
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• Setting: Configured with layer-3 rules. 

• Increase by nearly 15% for Snort, by 15% to 10X for Suricata (single thread),
and by 21% for OpenNetVM-Firewall 

• Suricata is more significant
• inspects packets deeper in payload than Snort and OpenNetVM-FW.
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Evaluation: Eliminating unused layer logic

Throughput of Snort Throughput of Suricata Throughput of OpenNetVM-FW

• Setting: Configured with layer-3 rules. 

• Increase by nearly 15% for Snort, by 15% to 10X for Suricata (single thread),
and by 21% for OpenNetVM-Firewall 

• Suricata is more significant
• inspects packets deeper in payload than Snort and OpenNetVM-FW.
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• Setting: Configured with TCP rules only. 

• The larger proportion of UDP packets, the larger performance gain. 

• 40% performance gain for Snort, 2.5× for Suricata,
and 6.8% for OpenNetVM Firewall
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Evaluation: Eliminating unused protocol logic

• Setting: Configured with TCP rules only. 

• The larger proportion of UDP packets, the larger performance gain. 

• 40% performance gain for Snort, 2.5× for Suricata,
and 6.8% for OpenNetVM Firewall



Evaluation: Eliminating Duplicated
and Overwritten Logic

• Setting:
• Mon—Snort: executed in two processes
• Mon+Snort: directly spliced
• Mon+Snort-Con: consolidated
• Mon+Snort-Opt: consolidated and

optimized
• Configured with TCP rules only for

Snort
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• Setting:
• Mon—Snort: executed in two processes
• Mon+Snort: directly spliced
• Mon+Snort-Con: consolidated
• Mon+Snort-Opt: consolidated and

optimized
• Configured with TCP rules only for

Snort

• Consolidation and Redundancy
Elimination help improve:
• By more than 30%

• Performance gain increases as the UDP
proportion increases.
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• Setting:
• Fw—Fw: executed in two processes
• Fw + Fw : directly spliced
• Fw + Fw -Con: consolidated
• Fw + Fw -Opt: consolidated and

optimized
• Configured with TCP rules only for latter

Firewall instance
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• Fw + Fw : directly spliced
• Fw + Fw -Con: consolidated
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• Consolidation and Redundancy
Elimination help improve:
• By more than 60%

• Performance gain increases as the UDP
proportion increases.



Evaluation: Overhead
• Labeling Variables and Actions:
• Operator-involved
• Once for an NF

# of Identified Critical Variables in Benchmarks 



Evaluation: Overhead
• Labeling Variables and Actions
• Optimization Overhead

Optimization Overhead 
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Conclusion

• We show the existence of three types of redundant logic in NFs.
• We design tool named NFReducer to eliminate the redundant

logic.
• Using runtime configurations
• Applying program analysis methods and compiler techniques.

• We evaluate NFReducer on commodity NFs and platform NFs 
• The performance gain is obvious
• The overhead is acceptable



Thanks and Q&A!

dbw18@mails.tsinghua.edu.cn



Scope of Usage

• NFs that process a larger protocol space could be benefited
significantly.
• e.g., IDSes, firewalls, and Deep Packet Inspectors (DPI) 

• NFs that process a single protocol could benefit less
• E.g., TCP load balancer, HTTP cache 

• In DevOps scenarios
• Each NF category contains many different NF variants 
• Many NFs synthesize several functionalities 
• One NF would be deployed as many instances 


