NFReducer: Redundant Logic Elimination for
Network Functions with Runtime Configurations

Bangwen Deng and Wenfei Wu
Tsinghua University

Abstract—Network functions (NFs) are critical components in
the network data plane. Their efficiency is important to the
whole network’s end-to-end performance. We identify three types
of runtime redundant logic in individual NF and NF chains
when they are deployed with concrete configured rules. We use
program analysis techniques to optimize away the redundancy
where we also overcome the NF specific challenges — we combine
symbolic execution and dead code elimination to eliminate unused
logic, we customize the common sub-expression elimination to
eliminate duplicated logic, and we add network semantics to
the dead code elimination to eliminate overwritten logic. We
implement a prototype named NFReducer using LLVM. Our
evaluation on both legacy and platform NFs shows that after
eliminating the redundant logic, the packet processing rate of the
NFs can be significantly improved and the operational overhead
is small.

I. INTRODUCTION

Virtualized network functions (NFs) in the network data
plane would process all traversing network traffic. Thus, their
efficiency significantly affects the whole network’s end-to-end
performance (e.g., latency accumulation, throughput bottle-
neck). A lot of works recognize this critical efficiency issue
and propose the corresponding optimization, such as acceler-
ating the NF execution [1]-[6], parallelizing NF (chains) [7],
[8], and consolidating NFs [9]-[11].

A recent trend of DevOps inspires us to propose an or-
thogonal approach — using the operation-time configurations
to optimize NF programs. “DevOps is a set of practices that
combine software development and IT operations”, whose
original target is to provide agile development and deployment.
With this trend, the barrier between the NF developers and
operators vanishes, meaning that the same NF developers are
able to get the operation-time configuration (either in advance
or in the development-deployment-operation life cycle).

In NF runtime operation, there are two kinds of configura-
tions — individual NF rules and NF chaining policy'. With
these configurations, we identify that a part of the NF program
code would become redundancy logic, which is defined as
the piece of code whose execution does not influence the
correctness of the packet processing of an NF or NF chain.
We summarize three types of them — unused logic, duplicated
logic, and overwritten logic.

Wenfei Wu is the corresponding author.

'In this paper, we consider the NFs are in a chain. They may be a
complicated topology like a directed acyclic graph (DAG), then the method
in this paper still works but needs to be combined with routing and switching
logic.

We refer to a few compiler optimization techniques to
optimize them, including dead code elimination, common
sub-expression elimination, etc. We also face and overcome
network-specific challenges. (1) Unused logic can generally
be eliminated by dead code elimination, but network protocols
may share variables (e.g., TCP port and UDP port), which
invalidates the dead code elimination. We overcome this
challenge by applying symbolic execution to extract individual
paths and run dead code elimination on each path (§IV-A). (2)
Duplicated logic is from multiple NFs’ parsing. It is supposed
to be eliminated by common sub-expression elimination and
copy propagation. We overcome an engineering challenge
that the current tool only conducts the optimization on a
single variable, not for global data structure; we flatten the
data structure in NFs to apply the optimization (§IV-B). (3)
Overwritten logic can be presumably eliminated by dead code
elimination, but the method itself depends on judge whether
a variable in an instruction is a lefthand symbol (LHS, whose
value depends on other variables) or a righthand symbol (RHS,
whose value decides other variables’ values). In network
software, send (pkt) and drop (pkt) have complicated
cases to decide whether pkt is LHS or RHS. We add a
heuristic before dead code elimination and avoid complicated
judgment (§IV-C).

We build a tool chain named NFReducer with these three
optimizations on LLVM. We measure the performance gain of
applying each optimization and all to two commodity NFs, one
platform NF, and a few NF chaining cases. We also analyze
the manual labor to the code so as to apply NFReducer, and
measure the execution time and re-compilation time as the
overhead. The result shows that NFReducer can obviously
improve NF’s processing speed (from 7% to 2.5x depending
on the situation) and has limited overhead (one-time manual
labeling and less than 10s rebuilt time).

Scope. NFReducer has the assumption that operation-time
configurations can be fed to the development process. In
DevOps, NF developers and operators are the same groups
of people (e.g., NF infrastructure vendors like cloud providers
and enterprise network constructors delivering solutions), and
NFReducer should be applied between the phases of develop-
ment and deployment. In the case where the developer does
not have the operation-time configurations, we do not regard
that they should be blamed for the redundant logic. Indeed,
all features and functionalities in an NF program come from a
combination of various factors, such as historical evolvement,
development tools, and market requirements. Supporting rich

1| /% One example Snort rule:

2| drop tcp 10.0.0.0/24 any —> 10.1.0.0/24 any
3| %/

4| struct {

5 unsigned long sip, dip;

6 unsigned short sport, dport;

7

8| } net;

9| void main () {

10 LoadRules () ;
11 while (1) {

12 pkt = ... // get a packet
13 DecodeEthPkt(pkt); // decode a packet
14 ApplyRules () ; // match rules

151} 1}
16| void DecodeEthPkt(u_char =pkt) {
17 DecodelPPkt (pkt);

}
19| void DecodelPPkt(u_char =pkt) {
20 net.dip =

21 net.sip = ...

22 net.protocol = .

23 log(net.sip, net.dip, net.protocol);
24 if (net.protocol == TCP)

25 DecodeTCPPkt(pkt);

26 else if(net.protocol == UDP)

27 DecodeUDPPkt (pkt);

28 else if(...) { ... }

29

}
30| void DecodeTCPPkt(u_char =pkt) {
31 net.dport =

32 net.sport = .
33 log(net.sport, net.dport);
34

}
35| void DecodeUDPPkt(u_char =pkt) {
36 net.dport =
37 net.sport = .
38 log(net.sport, net.dport);

}
40| void ApplyRules () {

41 while (...) { //iterate each rule r

42 if (MatchRule(r)) {

43 Action () ;

44 return;

451))

46| int MatchRule (Rule =#r){

47 if (r—>sip != net.sip) return O;

48 if (r—>dip != net.dip) return O;

49 if (r—>protocol != net.protocol) return O;

50 if (r—>sport
51 if (r—>dport
52 return 1;

!= net.sport) return O0;
!= net.dport) return O;

Fig. 1: Snort code (simplified)

features helps an NF to take over a larger market share. The

contribution of this paper is as follows.

« We show the existence of three types of redundant logic in
NFs in the scenario of DevOps, and devise compiler-based
solutions to eliminate the redundant logic.

« We implement the methodologies as a tool chain named
NFReducer. We evaluate it on commodity NFs and platform
NFs and demonstrate the performance gain and acceptable
overhead when applying NFReducer to these NFs.

II. BACKGROUND

A. NFs and the Operations

NFs are software in the network data plane. In their oper-
ation, there are two kinds of configurations. Each NFs need

Traffic from Internet Monitor All Flow UDP

to department) Drop
3 Monitor ¥ Snort
TCP Match

Actual Network Monitor

Policy

Internet —_— — ‘ Department
81 52

Fig. 2: NF chain: Monitor + Snort

Traffic from Internet

to department Match All Flow % Drop
> 1 » Fwe
Policy TCP Match
Actual Network %
FW1 == Pwe A
Internet @ @ ‘ Department
51 52

Fig. 3: NF instances: FW1 + FW2

to be configured to process the traffic with its own logic, and
multiple NFs need to be chained for synthetic functionalities.
Figure 1 shows an example of an Intrusion Detection System
(IDS) named Snort [12]. The configuration is about which flow
should get through (line 2). We observe that NF typically
has two stages — packet parsing and NF specific logic?
[13]. Snort parses a packet (line 13) and saves the extracted
header information in the global structure net; it then iterates
configured rules (line 14) to find the first match (line 41-45),
and applies corresponding action (drop or pass, line 43).
Figure 2 and 3 show configurations about NF chains, where
several NFs are placed in a sequence with traffic routed to
traverse them in the same sequence; each NF in the chain are
configured as above. Figure 2 shows a case where traversing
traffic is monitored (i.e., counting flow statistics) and then
processed by the IDS. Figure 3 shows a case where two
firewall instances are chained together: this is possible if two
NF operators (e.g., a company level and a department level)
want to manage their rules independently or with priority.

B. Three Types of Redundant Logic

We find that both kinds of configurations would cause
redundant logic.

Unused Logic. In Snort, if all rules use “any” to match
arbitrary port numbers (line 2), no matter what port number
an incoming packet has, its port number always match all
configured rules, and the conditions at line 50 and line 51
are always false (i.e., matched). Therefore, the port number
decoding (e.g., lines 31-32, lines 36-37) is redundant and can
be eliminated to save CPU cycles.

We call this a piece of unused logic. Note that “unused”
means “executed but not used”, not ‘“non-executed”. The
essential reason derives from the mismatch of the protocol
space in the development and that in the deployment. Network
protocols are organized in a layered stack (e.g., layer-3, layer-
4), with multiple protocol options (e.g., TCP, UDP) at each
layer. NF developers might try to cover a large protocol space
in the NF code for completeness [14]. However, in the runtime
deployment, NF operators might only configure a subspace of

2There exist NFs whose two stages are mixed, i.e., processing as parsing,
but they are minority ones. We do not discuss them in this paper.

the entire protocol space due to the requirements (e.g., cloud
tenant filtering away some traffic [15]). If the incoming packets
exercise extra protocols in the NF code than the configuration,
the redundant processing will happen.

Duplicated Logic. In Figure 2 and Figure 3, both NFs
need to parse packets and then perform their specific packet
processing logic. The double “parsing” is redundant logic.

We call this a piece of duplicated logic. The essential
reason is that the class of NF software usually share the
same operation — parsing packets. When they are developed
independently, each of them needs this piece of logic (to
proceed to the next step). However, in DevOps, an NF chain
is viewed as one piece of software without isolation, and thus,
the same logic of difference NFs becomes redundant.

Overwritten Logic. In Figure 3, in addition to the dupli-
cated logic, the two firewalls may have other redundancy. If
firewall 1 lets all UDP packets get through, but firewall 2
blocks all UDP packets, all work in firewall 1 that is done to
UDP (e.g., statistics, TTL decremental, or modification) would
become redundant.

We call this a piece of overwritten logic. The essential
reason is that the NF actions have semantic priority — packet
drop can invalidate packet pass. Once NF’s execution order
(i.e., the order on the chain) differs from the semantic order,
low semantic priority actions are first executed and cannot be
eliminated.

C. Goal and Preliminary Compiler Techniques

Goal. Our goal in this paper is to find a solution that
identifies and eliminates redundant logic in NFs and NF chains
caused by operation-time configurations, and the solution has
better be automated.

We take inspiration from how a compiler optimizes a
program during compilation and builds our own solution,
NFReducer. In NFReducer, we also overcome a few specific
challenges in NFs. We use a few preliminary program analysis
methods and a compiler framework. We introduce them below.

Constant Propagation. If a variable’s value is assigned (or
defined) by an instruction using a constant value, then between
the assignment and the next re-assignment on the execution
flow, the variable’s usage can be replaced by the constant.

Constant Folding. If an instruction’s result can be com-
puted at compile time, all usages of the result can be replaced
with the computed value during compilation. For example,
x=1+1 can be optimized as x=2.

Dead Code Elimination. If the execution of an instruction
does not influence anything in the following execution flow
(e.g., its computed value never used?), the instruction can be
eliminated. For example, if a variable x is never used after
x=1, then x=1 itself can be eliminated.

Common Sub-expression Elimination. If instances of
identical expressions(i.e., they are all equal to the same value)
happens in the program, they can be replaced by a single

3«Being used” is formally described as “appearing on the right side of an
assignment statement”, i.e., being a right-hand symbol or RHS for short.

Configured | '\ 2in Info
Rules

Eliminate
Redundant Logic

Source
Code

Action ﬁ> Extract Packet ﬁ> IntraNFOpt{() Optimized NF
Processing Logic Program

Consolidate()
CrossNFOpt()

Fig. 4: The Architecture of NFReducer
variable holding the computed value. For example, a=x+y;
b=x+y; can be optimized to a=x+y; b=a;

Copy Propagation. If a local variable is acting as an
intermediate variable, the occurrences of the variables can be
replaced with their values. Copy propagation often runs after-
ward the optimization of common sub-expression elimination
to achieve higher efficiency. For example, If b is not used
after b=a; n=Db+c;, then the sequence can be optimized as
n=a+tc.

Program Slicing. Starting from an instruction and one of
its operands (i.e., a criterion <instruction, variable>), program
slicing can find all successor instructions with computation
influenced by the criterion (i.e., forward slicing), and all
predecessor instructions whose computation influences the
criterion (i.e., backward slicing) [16].

Symbolic Execution. After marking inputs as symbolic
variables, symbolic execution collects execution conditions
for each program path and then generates concrete inputs
that can lead the path to be executed or validate the path is
infeasible [17]-[19].

Compiler Infrastructure. LLVM is a compiler infras-
tructure widely used in programming languages, software
engineering, and systems communities to build different tech-
niques [20]. All the previously mentioned program analysis
techniques have existing implementations under LLVM. Thus,
we also build NFReducer using LLVM to fast prototype our
idea.

Variables

III. SYNTHETIC OVERALL WORKFLOW

Eliminating redundant logic is not as simple as run the
compiler optimization once to the NF program. It has the
following procedures: (1) the NF program should be prepro-
cessed to extract the packet processing logic; (2) the operation-
time configuration should be injected into the program; (3)
then redundant logic elimination can be applied; (4) after
elimination, the program needs to (re)deployed to the system;
(5) once the configuration changes, the optimization needs to
be redone from step (2) to step (4). Figure 4 shows the overall
workflow of NFReducer.

A. Packet Processing Logic Extraction

The core functionality of an NF is to process the packet,
but as a general piece of software, it may be developed with
packet processing irrelevant features, e.g., logging, standard
output warning. While they are useful in practice, in this paper,

Algorithm 1 Identify Critical Variables (Varsldentify())

Input: NF Source Code S
Qutput: StateVariables SV, ConfigVariables CV
1: function VARSIDENTIFY(.S)
2: initialize variables set VS = {}, SV = {}, CV = {}
3: V'S = VS U GlobalVarDecls(S)
4 VS = VS U StaticVarDecls(S)
5: VS = VS U LocalVarDecls(LoopProc)
6: for each stmt in AssignmentStmts(loopProc) do
7
8
9

for each var in VS do
if var == stmt.LHS
: or var in PointsTo(stmt.LHS)
10: or PointsTo(var) N PointsTo(stmt.LHS)

11: then

12: SV =VS§ U wvar
13: end if

14: end for

15: end for

16: CV=VS§-5V

17: for each var in CV do

18: if |Used(LoopProc) then
19: Remove(CV,var)

20: end if

21: end for

22: return SV, CV
23: end function

we exclude these packet processing irrelevant logic due to the
following reasons.

First, eliminating the packet irrelevant logic can reduce the
total program size, which helps to accelerate the program
analysis; without this elimination, some program analysis
methods (e.g., symbolic execution) have scalability issues.
Second, the irrelevant logic consumes CPU cycles in the NF
runtime, and eliminating it helps to evaluate the performance
gain better. Third, in practice, these features usually can be
tuned enabled/disabled by macros during the compilation time
and are often eliminated in the release version. We extract
packet processing logic by first labeling its critical variable
and then find the program slice related to these variables.

Step 1: Labeling variables. Intuitively, an NF program
usually relies on a loop structure to process the packet stream.
We name the loop structure as the packet processing loop
(e.g., lines 11-15 in Figure 1). Packet processing loop may
have four classes of variables involved — packet variables,
state variables, config variables, and temp variables. Packet
and state variables are important to identify the NF actions,
while config variables are the key to eliminate the redundancy.

An NF usually relies on commonly used API to re-
ceive and send packets, e.g., pcap_loop() in libpcap and
rte_eth_rx_burst, rte_eth_tx_burst in DPDK. At the beginning
of the packet processing loop, the packet receiving function
would assign the received value to a variable, which is the
packet variable (e.g., pkt at line 12 in Figure 1). NFReducer
users can search the network I/O function and label the packet
receiving function’s return value or referenced arguments.

State variables maintain cross-packet information and affect
the packet processing result [21], [22]. For example, an SYN
flood detector needs a packet counter (and a threshold) to
decide whether to allow the current packet; a TCP-connection
aware firewall has a variable to record whether the firewall
has seen an SYN, SYNACK, or ACK, and decides whether
the current packet is valid. State variables have the following
properties. First, it is not a local variable of the packet process-
ing loop. Second, its value is modified in the packet processing
loop (typical appear on the left side of an assignment, i.e., a
left-hand symbol or LHS). Third, its value influences how to
handle incoming packets (typical appear on the right side of
an assignment, i.e., a right-hand symbol or RHS).

In the runtime, before an NF processes the incoming
packets, configurations are first loaded into config variables.
Config variables are initialized before the packet processing
loop, and their values affect the packet processing result
(e.g., all fields of parameter r of function MatchRule ()
in Figure 1). A config variable has the following properties.
Its value is generated during parsing configuration files (or
command line), it is used in the packet processing loop, and
its value does not change in the loop.

NFReducer uses Algorithm 1 to catch the state and config
variables. It first searches all candidate variables whose life-
time is longer than the packet processing loop, including the
global variables, static variables and local variables declared
before the packet processing loop (Line 3-5). Then the algo-
rithm refines the candidate variables according to the proper-
ties: for each assignment statement in the packet processing
loop, it checks whether the left-hand symbol (LHS) is equal or
point to the candidate variables, and put the candidate variables
acting as LHS into the class of state variables (Line 6-15). The
remaining set is a superset of all config variables (line 16).
The remaining set is refined by removing all variables that are
not used within the loop (not affecting packet processing, line
17-20), and the final remaining variables are config variables.

After receiving a packet, an NF can take flow actions by
replying or forwarding packets. It can also take state actions
by updating its state variables. NFReducer identifies the flow
actions by searching the network I/O functions used to send
packets (e.g., function Action () at line 43 in Figure 1)
and localize the state actions by inspecting where the state
variables are updated (assignment statement).

Step 2: Extract packet processing program slice. Algo-
rithm 2 shows the details of extracting the packet processing
logic. The algorithm takes labeled NF actions as inputs, applies
backward slices to search instructions whose execution can
influence the execution of the labeled actions, and reports all
searched instructions as identified packet processing logic.

We recommend having the developers or operators inspect
to decide whether to eliminate this kind of unrelated program
logic. The reason is twofold. First, some features (e.g., logging
at line 33 in Figure 1) are key to debugging or testing.
Although they do not impact how incoming packets are
processed, removing them can increase the difficulty of under-

Algorithm 2 Packet Processing Logic (PktProcLogic())

Algorithm 3 Individual NF Optimization (IntraNFOpt())

Input: NF Action Set acS and NF Source Code S
Output: Packet Processing Logic S’
1: function PKTPROCLOGIC(acS, S)
2: initialize code set CS = {}
3 for each instruction in acS do
4 CS = C'S U PROGRAMSLICING(instruction, S)
5: end for
6: S’ <+~ MERGECODE(C'S)
7: return S’
8: end function

standing an NF’s behaviors. Second, some logic may affect the
correctness of an analyzed NF. For example, synchronization
operations (e.g., locks) provide thread safety if an NF is
configured to run with multiple threads, but they are useless
if there is only one thread.

B. Config Variable Propagation

With packet processing logic ready, the config variables
are assigned by the operation-time configuration. Note that
loops usually cause difficulty to program analysis because, in
a loop, a variable may stand for different instances in different
iterations (e.g., the rule r in Snort in line 42). But for the
convenience of redundant logic elimination, the code needs to
be transformed by unfolding loops.

Step 3: Unrolling loops. NFReducer unrolls a loop by
cloning its loop body and functions called from the loop n
times, with n equal to the number of entries of the loop
data structure. For example, if the Snort in Figure 1 is only
configured with the rule in line 2, the rule matching loop (lines
41-45) is changed to one clone of the loop body. Function
MatchRule () called in the loop is also cloned.

After packet processing logic is prepared, the redundant
logic elimination in § IV is applied to get an optimized piece
of code. The redundant logic elimination is elaborated in § IV
and we proceed to the (re)deployment after the elimination.

C. (Re)deployment Optimized NF

NF chains have two execution models — the run-to-
completion model (RTC, i.e., multiple NFs consolidated
and running as one single process) and the pipeline model
(i.e.,multiple NFs running as independent processes and
chained by inter-procedure I/O). As NFReducer consolidates
NFs and eliminates duplicated parsing (not necessary to add
them back), the optimized NF would run in an RTC model.

The RTC model has the advantage of no virtualization and
inter-procedure I/0O than the pipeline model. The traditional
RTC [23], [24] model has the disadvantage of no inter-NF
memory isolation, but this can be complemented by compi-
lation time memory check. RTC and pipeline models have
different parallelization methods — RTC would divide flow
spaces and assign a core to an NF chain instance to process a
subspace, and pipeline would assign each NF a separate core.

Input: Packet Processing Logic S, Configuration conf
Output: Optimized NF Code S’

1: function INTRANFOPT(con fig, S)

2: S = apply config to S.

3 initialize code set C'S = {}

4 paths = EXTRACTEXECUTIONPATH(S)

5 for each path p in paths do

6: p' +~CONST_FOLD_PROPAGATE(p)

7 if SYMBOLICEXECUTION(p') is infeasible then
8 continue

9: end if

10: code <~ DEAD_CODE_ELIMINATION(p)
11: CS =CS U code

12: end for

13: S’ <~ MERGECODE(C'S)

14: return S’

15: end function

| Parse R . { Match
{ Shared Data
P Structure | |
TCP Parse i i TCP Match
\ net.sport /
| netdport [N~
UDP Parse / ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, \ UDP Match

Fig. 5: Data Dependence in Snort
IV. REDUNDANT LOGIC ELIMINATION
A. Unused Logic Elimination

Dead code elimination naturally suits the unused logic
elimination in NFs. In the example in §II, the port number is
parsed in the packet parsing phase. But in the later stage, it is
matched to a wildcard (always true), which can be eliminated
by constant folding (line 50-51). Then the port number parsing
becomes dead code and can be eliminated (line 30-31, 36-37).
We call the unused layer parsing as a case of unused logic.

The main idea of dead code elimination is that if a variable
is updated (LHS) but not used afterward (RHS), its assignment
is a piece of dead code. In NF specific software, we meet with
a new challenge — network packet data structure is shared
between the execution path, causing the usage on one path to
mislead the usage judgment on another path.

Using Snort as an example, both protocol TCP and UDP
have the same semantics of “port number” and in NF TCP
packets and UDP packets would share the same variable to
store the port number. Assuming Snort is configured to only
process TCP packets, all UDP packets would be ignored —
the condition at line 49 would always be true for them (i.e.,
not matched). The port number of incoming UDP packets
would not influence rule matching results since line 50 and
line 51 are never executed for the UDP packets. Therefore, the
logic to decode port numbers for UDP packets inside function
DecodeUDPPkt () is unnecessary and should be removed.

But in fact, the data structure “port number” is used in TCP
matching, and the dead code elimination algorithm would

Algorithm 4 Consolidation (Consolidate())

Algorithm 5 Cross-NF Optimization (CrossNFOpt())

Input: NF1 Source Code S7 and NF2 Source Code S2
Output: Consolidated Program S’
1: function CONSOLIDATE(S1, S52)
2: RENAMEVARFUNC(S51, 52)
S’ + SPLICE(S1, 52)
S’ +~ COMMON_SUBEXPRESSION_ELIMINATION(S")
S’ <~ COPY_PROPAGATION(S")
S’ < DEAD_CODE_ELIMINATION(S")
7: return S’
8: end function

AN

falsely recognize it as being used after the UDP parsing. Thus,
the UDP parsing would not be eliminated. Figure 5 illustrates
the dependency between the two phases and the data structure,
and we name it unused protocol parsing.

Solution. We leverage symbolic execution to search the
paths sharing data structure. We perform dead code elimination
on each path, and then merge each path back to a program.

The whole algorithm is illustrated in Algorithm 3. We
extract all execution paths (line 4, they may contain unsat-
isfiable one). For each path, we conduct constant folding and
propagation (line 6), and then we leverage symbolic execution
to judge whether the path is feasible (lines 7-9, do this after
line 6 can be faster). If it is feasible, we conduct dead code
elimination (line 10). We compute the union of all code left in
each feasible path and use the union as the optimized result.
B. Duplicated Logic Elimination

Duplicated logic is eliminated by splicing NFs as one
program and remove repeated code. Common sub-expression
elimination and copy propagation are commonly used methods
to remove repeated code.In the program splicing, variables
and functions must be renamed to avoid conflicts (so as to
be compilable). Use the Snort as an example, if two Snort
programs are spliced (assuming their variables and functions
are renamed), a packet would be parsed twice and store in two
net (assume they are renamed netl and net?2). The latter
one should be removed.

Algorithm 4 shows the workflow of consolidating two
NFs. It does program renaming, program splicing, common
sub-expression elimination, copy propagation, and dead code
elimination sequentially and completes the optimization.

In the implementation, we overcome an engineering chal-
lenge. The default version of LLVM CSE optimization can
only handle single variables, not global data structures. But a
packet is usually a data structure (e.g., net in Snort), which
cannot be handled. The essential reason is a data structure field
is represented by a base address plus an offset, which has no
name and has the same format with a pointer plus an offset
(may cause mistakes). We parse the code and mark the packet
specific data structure fields (its base address plus the offset)
as a single variable, and re-implement CSE.

C. Overwritten Logic Elimination

Intuitively, overwritten logic can be eliminated by dead code
elimination. For example, for a sequence of instructions x=1;
x=2;, the first instruction x=1 is an assignment (LHS) that

Input: Consolidated Program S
Output: Optimized Program S’
1: function CROSSNFOPT(S)
2 initialize code set C'S = {}
3 paths = EXTRACTEXECUTIONPATH(S)
4 for each path p in paths do
5 TRUNCATEATFIRSTDROP(p)
6: CHECKCHAINEDACTIONS(p)
7 LABELACTIONPKT(p)
8 code < DEAD_CODE_ELIMINATION(p)
9: CS =CS U code
10 end for
11: S’ <+~ MERGECODE(C'S)
12: return S’
13: end function

is never used (RHS) afterward (before x=2), and thus can be
eliminated.

But in NF software, there is difficulty in deciding whether
the variable is RHS or LHS in NF actions. That is, should the
variable pkt in send (pkt) and drop (pkt)* be regarded
as RHS or LHS? For drop (pkt), pkt should be LHS (or
neither), so that all previous packet header modification is
regarded as dead code. But all the following code should not
participate in optimization.

For send (pkt), pkt should be partially RHS. That is,
pkt should be unrolled to packet header fields, for fields that
have been LHS before, they are RHS now; for fields that have
not been LHS, they are neither. This complicated decision can
avoid the unused fields (e.g., port number) become RHS so
that they cannot be eliminated.

In addition, this overwritten logic elimination should be
done on each execution path because we do not want TCP
drop to eliminate UDP parsing.

Algorithm 5 shows the whole process. The program is
first symbolically executed to get each path. Then each path
is truncated at the first drop, and packet fields are labeled
according to the action. And NFReducer runs dead code
elimination on each path. Finally, all optimized paths are
merged, and the result is returned.

Overall, the three algorithms should be applied in the fol-
lowing order — duplicated logic elimination, then overwritten
logic elimination, and finally unused logic elimination.

V. IMPLEMENTATION
In packet processing logic extraction, We rely on sev-

eral existing implementations of program analysis tools in
LLVM [20] to build NFReducer. We use the DG library [25]
of Symbiotic [26] as the static program slicing discussed in
§III-A. The slicing takes the tuples of (instruction, instruction
operand) as input. We use all the combinations between the
labeled NF actions and their operands as input tuples.

We implement a pass to clone the code when it is necessary
and replace the identified config variables with corresponding

4Some papers say three actions — pass, drop, and modify. We regard the
modify as “an assignment plus pass”.

constant values in configured rules (§1V-A). The existing im-
plementation of constant propagation only processes variables
in primitive types and does not consider structs and class.
We enhance the existing implementation to enable constant
propagation on struct and class fields when they are used
as config variables. We also enhance the Common Sub-
expression Elimination pass and Copy Propagation pass in the
LLVM platform to finish the corresponding optimization.

We use KLEE [17] as the symbolic execution engine. By
default, KLEE also explores commonly-used library functions
along an execution path, which can significantly increase the
number of paths to be analyzed without providing benefits to
our results. Therefore, We configure KLEE to only analyze
NF code without inspecting functions in standard libraries.

We reuse most optimization passes of LLVM, including
dead code elimination, constant propagation and folding.
We implement common sub-expression elimination and copy
propagation by ourselves as described in § IV-B.

VI. EVALUATION

We collect NFs and apply NFReducer. We demonstrate
that NFReducer can improve NF performance with acceptable
operation overhead. We make a study about the potential gain
of applying NFReducer in a campus network.

A. Experimental Setup

We implement NFReducer using LLVM-5.0.0. All our ex-
periments are conducted on a Linux workstation, with ten
1200MHz CPU cores and 128GB memory.

Benchmarks. We select two legacy IDSes (Snort-1.0 and
Suricata-3.1) and two platform NFs (a firewall and a monitor)
on OpenNetVM [27] as our benchmark programs to perform
the individual NF optimization. We choose them because their
implementations cover a large protocol space, and it is easy
to change their configured rules. We use throughput (i.e., the
number of processed packets per second) as the performance
metric. We also set up the NF chain applications depicted
in Section II in the OpenNetVM platform [27] as the cross-
NF optimization benchmarks. In addition to the performance
metric, we also measure the labeling effort and NFReducer’s
processing time as the metric of operation overhead.

Preparation: Packet Processing Logic. Figure 6 shows the
performance gain after eliminating program logic irrelevant to
packet processing for Snort (§1II-A). We can achieve around
10x performance improvement (i.e., from 0.56 Mpps to 5.75
Mpps). Among the unrelated logic, logging each packet’s
statistics is the most time-consuming. We do not recommend
removing all logging functionalities in NFs since they are
important for testing and debugging. However, our results still
confirm that NFReducer can precisely identify logic unrelated
to packet processing, and removing the logic sometimes can
significantly improve NFs’ performance. We also conduct the
same experiment for Suricata and OpenNetVM-Firewall, but
the performance gain is very small (i.e., less than 1%).

As we discussed in §III, our redundancy elimination is
applied to packet processing logic so that all the following

evaluations and comparisons are conducted on the extracted
packet processing logic for all the benchmarks.

B. Individual NF Performance

Unused Layer Redundancy. Figure 7-9 show the perfor-
mance improvement after eliminating unused layer redundancy
for Snort, Suricata, and OpenNetVM-Firewall, respectively.
The test NFs are only configured with layer-3 rules. Snort and
OpenNetVM-Firewall only have single-thread modes. Suricata
has both single-thread and multi-thread modes.

Two figures show that the throughput of the two IDSes and
the firewall increase significantly. (e.g., 15% for Snort, 21% for
OpenNetVM-Firewall, 15%-10x and 40% to 3x for Suricata
in single-thread mode and multi-thread mode, respectively).

As packet size increases, the performance gain is constant
for Snort and OpenNetVM-Firewall, but more performance
gain can be achieved for Suricata in the single-thread mode.
The reason is that Suricata inspects packets deeper in payload
than the other two, so that Suricata conducts more redundant
computation after configured with layer-3 rules only. Suricata
in the multi-thread mode shows the same trend except that in
the small packet case (64B), the throughput is lower than that
in 128B. Because multi-threading usually cannot handle well
the small packet in high packet per second.

In summary, unused layer redundancy exists in both the
legacy IDSes and the platform firewall, and we can achieve a
much better performance after eliminating it.

Unused Protocol Redundancy. Figure 10-12 show the
performance gain after eliminating unused protocol redun-
dancy for Snort , Suricata in the single-thread mode, and
OpenNetVM-Firewall, respectively. The benchmark NFs are
configured with TCP rules only. As the number of UDP
packets increases, the algorithm shows a larger performance
gain. When the proportion of UDP packets increases to
50%, removing the redundancy can achieve 40% and 2.5x
performance gain for Snort and Suricata, respectively. In
OpenNetVM-Firewall, configurations are embedded in code,
in which the compiler might apply some optimizations before
we apply NFReducer, so the performance gain is moderated.
But we can also achieve a 6.8% performance gain for the
firewall when the proportion of UDP packets reaches 50%.

These results show that unused protocol redundancy can
significantly impact NFs’ performance, and NFReducer can
effectively eliminate it.

C. NF Chain Optimization

To evaluate the performance gain after eliminating cross-NF
redundancy, we set up the NF chains as mentioned in §II and
perform optimization on them. For the applications in §1I, we
configure the latter NF instance with TCP rules only.

We compare the throughput under two settings. First, the
two NFs execute in two different processes, and they are
chained in a pipeline (“Mon-Snort” in Figure 13, “Fw-
Fw” in Figure 14). Second, the two NF instances are
spliced directly (“Mon+Snort”, “Fw+Fw”), consolidated to-
gether (“Mon+Snort-Con”, “Fw+Fw-Con”) and further op-
timized by NFReducer (“Mon+Snort-Opt”, “Fw+Fw-Opt”).

3000

Throughput (Mpps)

256
Packet Size(bytes)
Fig. 6: Throughput of Snort after re-
moving irrelevant.

Packet Size(bytes)

Fig. 7: Throughput of Snort after elim-
inating unused layer redundancy.

8 25001
Q.

=< 2000
3 1500}
ey

S 1000
e

£ 500t
0

1024 1500

= _

Packet Size(bytes,

Fig. 8: Throughput of Suricata after
eliminating unused layer redundancy.

Throughput (Mpps)

Packet Size(bytes)

Fig. 9: Throughput of OpenNetVM-FW
after eliminating unused layer redun-
dancy.

UDP Packets Proportion(%)

Fig. 10: Throughput of Snort after elim-
inating unused protocol redundancy.

Throughput (Kpps)

UDP Packets Proportion(%)

Fig. 11: Throughput of Suricata af-
ter eliminating unused protocol redun-
dancy.

o
—_

[Mon-Snort B Mon+Snort-Con
Mon+Snort-Opt

4.0
% 3.5/ @l Fw-Fw @& Fw+Fw-Con
Fw+Fw Fw+Fw-Opt

’g4 \-OrlglnaIOptumnzed‘ _______________ § 3 Mon+Snort
= =
P = 6t -<fF - -
3 2\ W
=3 S EREE R BN
g 3 N0 NZRN
: 21
: = Y B B
"o 0 2

UDP Packets Proportion(%)

Fig. 12: Throughput of OpenNetVM-
FW after eliminating unused protocol
redundancy.

They are all deployed in one process. We measure the per-
formance gain of cross-NF optimization from the following
aspects.

Duplicated Logic Redundancy. As shown in Figure 13 and
Figure 14, comparing the results of splicing and consolidating
NFs, the consolidation can help improve throughout by more
than 25% for monitor and Snort IDS chain, and improve
throughout by nearly 55% for the two OpenNetVM-Firewall
instances. Since the parsing overhead in OpenNetVM-Firewall
contributes more to the whole overhead than that in Snort IDS,
the performance gain of the firewall is larger.

This result shows that duplicated logic redundancy can
impact NF chains’ performance, and NFReducer can help
eliminate this kind of redundancy effectively.

Overwritten Logic Redundancy. We compare the perfor-
mance of the optimized program with the consolidated one to
explain the performance gain when eliminating overwritten
logic redundancy. As shown in Figure 13 and Figure 14,
the optimized program can achieve about 7% performance
gain in both cases when UDP proportion reaches 50%. When
increasing the proportion of UDP packets, we can also get the
increasing performance gain in both cases.

Thus, overwritten logic redundancy also exists when mul-
tiple NFs are deployed together and NFReducer can help

UDP Packets Proportion(%)

Fig. 13: Throughput of Snort after elim-
inating cross-NF redundancy.

N:ZINC 7N % 320

VA 7R Ny
W Y B I No78 NZ0) Vgl N7
30 40 50 0 10 20 40 50

UDP Packets Proportion(%)

Fig. 14: Throughput of OpenNetVM-
FW after eliminating cross-NF redun-
dancy.

eliminate it and improve the performance of multiple NFs.
D. Overhead

The overhead of NFReducer comes from two aspects. First,
we need to label the critical variables and NF actions. Second,
when the configured rules of an NF are changed, NFReducer
needs to analyze the NF and rebuild the NF.

Following the methods described in § III-A, we identify
the critical variables for the benchmark NFs and show them
in Table I. The three NFs have the same number of packet
variables for sharing similar network I/O functions. As for the
state variables, Snort has 4 false positives related to the log
operation among 8 detected state variables, while Suricata has
one among 5. Due to direct rules declaration instead of using
a linked list in the source code, the OpenNetVM-Firewall is
detected more config variables than the other two NFs. One
author identifies all the variables following the methods in half
an hour. An NF program only needs this manual labeling once.
When the NF’s configuration changes, the labeling results can
be reused by NFReducer. To sum up, we don’t think the
labeling process can incur a large operation overhead.

The optimizing time overhead is shown in Table II. For
Snort, the execution time to extract the packet processing logic
is 7.6s, and the execution time to eliminate redundancy in one
Snort instance is 26.8s. The optimized version needs 0.126s to

TABLE I: # of Identified Critical Variables in Benchmarks

TABLE III: The Statistics of Rules

of Packet # of State # of Config Network Layer Network Protocol
Variables Variables Variables Layer-3|Layer-4 | Others| TCP | UDP |IP/ICMP | Others
Snort IDS 2 8 (4 FPs) 6 Rule Set
Suricata IDS 2 5 (1 FP) 10 of Snort 4.2% | 95.8% |95.8% | 87.1%8.6% | 4.2% 0
OpenNetVM:-Firewall 2 4 2 o e Se er | 120% | 88% | 0 |78.4%|9.6%| 11.4% | 0.6%
TABLE II: Overhead e
]?));g?ecstlri]fgpliccg]i? Optimization | Rebuilding | Parser, filter). N.FRedu.cer. W.OI’kS on the instruction level and
Sor DS e TRE RV has more potential ol?tlm}zatlon space. .
Suricata IDS T2s 33.65 3.753s Other NF Consolidation. SpeedyBox [9] provide APIs to
OpenNetVM-Firewall 0.146s 1.606s 1.571s instrument NFs so as to collect and consolidate actions of an

be built into an executable. NFReducer spends 1.2s and 83.6s
to extract the packet processing logic and remove redundancy
for Suricata, respectively. To build the optimized version, we
need 2.753s. As for OpenNetVM-Firewall, NFReducer spends
0.146s to extract the packet processing logic and 1.606s to
remove redundancy. We need 1.571s to rebuild the optimized
version into the OpenNetVM platform.

Since an NF’s configured rules tend to be used for a long
time (e.g., several days), we think the execution time of
NFReducer and the rebuilding time are tolerable in real-world
operation.

E. Study of Production Network

We collect and analyze the open-source Snort IDS rules [28]
from the research community and the firewall rules from
a campus cluster to show the practical rules deployment.
Table III shows the statistics. In the campus network, the
internal network rules target access control between regions,
and the operator configures layer-3 rules. The external network
rules target security, and the operator configures layer-4 rules.
Moreover, they are in different firewall instances. The one with
layer-3 rules is expected to benefit from NFReducer.

VII. RELATED WORK AND DISCUSSION

NFV frameworks. NFReducer provides an approach to
jointly considering NF development and operation for better
performance. In the current NF development, NFs are devel-
oped either as individual legacy software (e.g., load balancers,
firewalls, NATs, caches, etc. [12], [29]-[34]) or in a develop-
ment framework (e.g., libVNF [35], NetBricks [23]). In the NF
deployment, NFs are managed by control plane systems such
as OpenNetVM [27], ONOS [36], BESS [24], ClickOS [37],
OpenNF [38], libVNF [35], NEWS [39], OpenBox [10], and
NetBricks [23]. NFReducer can improve the NF performance
in these development and deployment frameworks.

NF acceleration. Existing works on NF performance ac-
celeration fall into two categories. They either accelerate
the processing speed (e.g., using FPGA or GPU [1]-[6])
or parallel the processing [7], [8]. NFReducer is orthogonal
to these solutions. It refines the NF internal algorithm and
reduces complexity. Microboxes [40] is a framework that
takes redundancy as inputs and eliminates redundancy, while
NFReducer can also identify redundancy.

Modular NF. Works like SNF [41], CoMB [11], Open-
Box [10] also propose the idea of cross-NF redundant logic
elimination. They work on NF composing modules (e.g.,

NF chain at runtime. NFReducer does the consolidation after
development, avoiding changing the code. NFReducer [42]
uses program analysis to eliminate intra-NF redundancy, and
NFReducer extends the optimization space to NF chains.

Other Inspirations. Works like StatelessNF, StateAlyzr,
and NFactor [21], [22], [43], [44] inspire the packet processing
logic identification in NFReducer.

Scope of Usage. For individual NF optimization, as dis-
cussed in § II-B, the redundancy is caused by the mismatch
of the configurations and the parsing code. Thus, NFReducer
could improve NFs that process a larger protocol space sig-
nificantly, e.g., IDSes, firewalls, and Deep Packet Inspectors
(DPI). NFs that process a single protocol could benefit less
from NFReducer, e.g., TCP load balancer, HTTP cache. For
NF chain optimization, all NFs benefit from the two opti-
mizations. Because all NFs parse packets and have actions
on packets.

Even if NFReducer cannot benefit all NF categories, such a
tool is non-trivial in many DevOps scenarios. (1) Each NF cat-
egory contains many different NF variants. For example, both
Snort [12] and Suricata [30] are IDSes, and both PAN [45]
and pfSense [31] are firewalls. NFReducer will improve their
runtime performance. (2) Many NFs synthesize several func-
tionalities (e.g., PAN and pfSense [31], [45] with NAT and
firewall), and NFReducer could be applied to them. (3) In a
network, one NF would be deployed as many instances, each
of which has customized configurations. For example, a public
cloud may have each physical server installed its own security
rules (e.g., iptables [46] to filter traffic) customized towards
the server user. Using NFReducer to automate the optimization
of each instance is more applicable than conducting manual
optimization.

VIII. CONCLUSION

We built NFReducer that leverages program analysis tech-
niques to eliminate redundancy logic in NFs and NF chains. By
combining typical program analysis techniques, NF specific
domain knowledge, and customized implementation, NFRe-
ducer can eliminate unused logic in individual NFs and
duplicated and overwritten logic in NF chains. Our prototype
and evaluation show that NFReducer can improve NF (chain)
performance much with limited operational overhead.

ACKNOWLEDGMENT
This project is supported by the Turing AI Institute of
Nanjing, China.

[1]
[2]

[4]

[5]

[7]

[8]

[10]

(1]

(12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

“DPDK,” https://www.dpdk.org.

B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proceedings of the 2016
ACM SIGCOMM Conference (SIGCOMM ’16), Florianépolis, Brazil,
2016.

W. Sun and R. Ricci, “Fast and flexible: parallel packet processing with
gpus and click,” in Proceedings of the ninth ACM/IEEE symposium on
Architectures for networking and communications systems (ANCS ’13),
San Jose, CA, 2013.

X.Yi, J. Duan, and C. Wu, “Gpunfv: a gpu-accelerated nfv system,” in
Proceedings of the First Asia-Pacific Workshop on Networking (APNet
’17), Hong Kong, China, 2017.

K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng, and L. Yang, “G-net:
Effective GPU sharing in NFV systems,” in 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’18), Renton,
WA, 2018.

G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis,
“GASPP: A gpu-accelerated stateful packet processing framework,”
in 2014 USENIX Annual Technical Conference (USENIX ATC ’14),
Philadelphia, PA, 2014.

C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network
function parallelism in nfv,” in Proceedings of the 2018 ACM SIGCOMM
Conference (SIGCOMM ’17), Los Angeles, CA, 2017.

Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich, A. Shaikh,
and Z.-L. Zhang, “Parabox: Exploiting parallelism for virtual network
functions in service chaining,” in Proceedings of the Symposium on SDN
Research (SOSR ’17), Santa Clara, CA, 2017.

Y. Jiang, Y. Cui, W. Wu, Z. Xu, J. Gu, K. K. Ramakrishnan, Y. He,
and X. Qian, “Speedybox: Low-latency nfv service chains with cross-nf
runtime consolidation,” in Proceedings of the 39th IEEE International
Conference on Distributed Computing Systems (ICDCS ’19), Dallas,
Texas, 2019.

A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: a software-defined
framework for developing, deploying, and managing network functions,”
in Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM
’16), Florian6polis, Brazil, 2016.

V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” in 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’12), San Jose, CA, 2012.

“Snort IDS,” https://www.snort.org/.

A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker, “Verifying
reachability in networks with mutable datapaths,” in /4th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI'}
17), 2017, pp. 699-718.

S. McCanne and V. Jacobson, “The bsd packet filter: A new architecture
for user-level packet capture.” in USENIX winter, vol. 46, 1993.

S. Devarajan, V. Stepanenko, R. Verma, and J. Kawamoto, “Multi-tenant
cloud-based firewall systems and methods,” May 18 2017, uS Patent
App. 14/943,579.

M. Weiser, “Program slicing,” in Proceedings of the 5th international
conference on Software engineering (ICSE '81), 1981.

C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’08), San Diego, California, 2008.
P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’05),
Chicago, IL, USA, 2005.

K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for ¢,” in Proceedings of the 10th European Software Engineering Con-
ference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE ’05), ser. ESEC/FSE-13,
Lisbon, Portugal, 2005.

C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization (CGO ’14), Palo Alto, California, 2004.

[21]

[22]

(23]

[24]

[25]
[26]
[27]

[28]
[29]
(30]
[31]
(32]
(33]
[34]
[35]

[36]

(371

[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella, “Paving the way for {NFV}: Simplifying middlebox mod-
ifications using statealyzr,” in 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’16), Santa Clara, CA, 2016.
M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in /4th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’17), BOSTON, MA, 2017.

A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of nfv,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16), Savannah,
GA, 2016.

S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“Softnic: A software nic to augment hardware,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155,
2015.

“DG Static Slicer,” https://github.com/mchalupa/dg.

“Symbiotic,” http://staticafi.github.io/symbiotic.

W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. Ramakrishnan, and T. Wood, “Opennetvm: A platform for high
performance network service chains,” in Proceedings of the 2016 work-
shop on Hot topics in Middleboxes and Network Function Virtualization
(HotMIddlebox ’16), Florianopolis, Brazil, 2016.

“Snort IDS Rules,” https://www.snort.org/downloads#rules.

“PRADS,” https://github.com/gamelinux/prads.

“Suricata IDS/IPS,” https://suricata-ids.org/.

“pfsense,” https://www.pfsense.org/.

“Balance,” https://www.inlab.de/balance.html.

“Haproxy,” http://www.haproxy.org.

“clicknat,” https://github.com/kohler/click/blob/master/conf/thomer-
nat.click.

P. Naik, A. Kanase, T. Patel, and M. Vutukuru, “libvnf: Building virtual
network functions made easy,” in Proceedings of the ACM Symposium
on Cloud Computing (SOCC ’18), Carlsbad, CA, 2018.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on Hot
topics in software defined networking (HotSDN ’14), Chicago, Illinois,
2014.

J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici, “Clickos and the art of network function virtualization,” in 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’14), Seattle, MA, 2014.

A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” in Proceedings of the 2014 ACM Conference on SIGCOMM
(SIGCOMM ’14), Chicago, Illinois, 2014.

H. Mekky, F. Hao, S. Mukherjee, T. Lakshman, and Z.-L. Zhang,
“Network function virtualization enablement within sdn data plane,” in
IEEE INFOCOM 2017-IEEE Conference on Computer Communications,
Atlanta, GA, 2017.

G. Liu, Y. Ren, M. Yurchenko, K. Ramakrishnan, and T. Wood,
“Microboxes: high performance nfv with customizable, asynchronous
tep stacks and dynamic subscriptions,” in Proceedings of the 2018 ACM
SIGCOMM Conference (SIGCOMM ’18), Budapest, Hungary, 2018.
G. P. Katsikas, M. Enguehard, M. KuzZniar, G. Q. Maguire Jr, and
D. Kosti¢, “Snf: Synthesizing high performance nfv service chains,”
Peer] Computer Science, vol. 2, p. €98, 2016.

B. Deng, W. Wu, and L. Song, “Redundant logic elimination in network
functions,” in Proceedings of the Symposium on SDN Research, 2020,
pp. 34-40.

M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“Snap: Stateful network-wide abstractions for packet processing,” in
Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16),
Floriandpolis, Brazil, 2016.

W. Wu, Y. Zhang, and S. Banerjee, “Automatic synthesis of nf models
by program analysis,” in Proceedings of the 15th ACM Workshop on
Hot Topics in Networks (HotNets '16), Atlanta, Georgia, 2016.

“PAN,” https://www.paloaltonetworks.com/.

“iptables,” https://www.netfilter.org/projects/iptables/index.html.

