NFOpt: Eliminating Redundant Logic in NF Programs 002
using Operation-Time Configurations

Bangwen Deng, Wenfei Wu
I11IS, Tsinghua University

Introduction
Background Contributions:
Network functions (NFs) are critical components 1n the network data plane. Show the existence of redundant logic in NFs in the scenario of

Their efficiency 1s important to the whole network’s end-to-end performance. DevOps.
And a lot of works recognize this critical efficiency 1ssue and propose the
corresponding optimization, such as accelerating the NF execution,
parallelizing NF (chains), and consolidating NFs. A recent trend of DevOps
inspires us to propose an orthogonal approach — using the operation-time
configurations to optimize NF programs.

* Design compiler-based solutions called NFOpt to eliminate the
redundant logic.

* Evaluation NFOpt on commodity NFs and platform NFs
completely.

NFOpt Overview

Configured
Rules Eliminating three kinds of NF redundant logic:
JL * Unused Logic.
L_% Eliminate What if only L3 header is used? E.g., <10.0.0.1->*, s/d port=%*, drop>
~ Redundant Logic Unused
E : Wildcard 7,
Action > xtract Packet f‘> Parsing Match ction
Processing Logic : One Single NF : T
: Port (L4)
\jriab; Multiple NFs Always True
Figure 1: NFOpt Overview * Duplicate LOgiC-
, , : : , * Overwritten Logic.
« NF Source Code, * Constant Propagation & Expression Fold Tt from ntormet e 0P o
. . . » Fwi » Fw2
» NF Configuration * Dead Code Elimination Poicy % —
e Tdentified Variables * Common Sub-expression Elimination Actual Network i N
and Actions ° COpy Propagatlon _ Internet) | Department

* Symbolic Execution
* Program Slicing

Evaluation
i 4.0— 10—
UnUSEd Loglc REdunda ncy 33.5_- Original Optimized _______________) - Original Optimized ?D\SOOO - Original(Single-thread) - Original(Multithread) _
o) S 8 1 2 25001 optimized(Single-thread Optimized(Multithread) | —
» Unused Layer Redundancy = g e L e
The throughput of the two IDSes and the firewall 3
increase significantly. (e.g., 15% for Snort, 21% for §>
OpenNetVM-Firewall, 15%-10X and 40% to 3 X for g
Suricata in single-thread mode and multi-thread mode, - '
respectively) ' 128 256 512 1024 1500 64 128 25 512 1024 1500 0 64 128 256 512 1024 1500

Packet Size(bytes) Packet Size(bytes) Packet Size(bytes)

° Unused PI’OtOCOl Redundancy Figure 2: Eliminate Unused Layer Logic Performance Gain of OpenNetVM-FW(left), Snort (middle), Suricata (right)

: : H—— . . . 10 . . 1000 —
When the proportion of UDP packets increases to | imm Origina Optimized m Optimized - |[I Original Optimized (Single-thread)
50%, removing the redundancy can achieve 40% and &4—"-—"7"-——"7"" " """"""""~"~~~~~~~~~~~- Qo e 800 - X
2.5X performance gain for Snort and Suricata, 33 = 6 < 600
respectively. In OpenNetVM-Firewall, configurations 2 a a
are embedded 1n code, the compiler would apply some §»2‘ %:? i g» 400
optimizations before we apply NFOpt, the performance €1} 2 9 £ 200}
gain 1s moderated. - ' - ' = '
10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
D I' d |_ . R d d UDP Packets Proportion(%) UDP Packets Proportion(%) UDP Packets Proportion(%)
u p |Cate OgIC _ e unda ncy Figure 3: Eliminate Unused Protocol Logic Performance Gain of OpenNetVM-FW(left), Snort (middle), Suricata (right)
The Duplicated Logic elimination can help improve 40— | | | | | | | | | |
tjlroughOUt by more than 25% for monitor and Snort ’&;3.5_- Fw—Fw @ Fw+Fw-Con| _____________ ,(_,)\10_- Mon—Snort [Mon+Snort-Con|
S chain, and improve throughout by nearly 55% for 2%3.0- Fw+Fw Fw+Fw-Opt | | 2& g{{L] Mon+Snort Mon+Snort-Opt | _______.
the two OpenNetVM-Firewall instances. = 2.5 = .l
o 2.0 a
. . 5 1.5} < 4yl
Overwritten Logic Redundancy 2l 2
c = 2f
After the elimination of the Overwritten Logic - 88 =
elimination Optimized program can achieve about 7% | 10 20 30 0 10 20 30 40 50
performance gain in both case when UDP proportion UDP Packets Proportion(%) UDP Packets Proportion(%)
reaches to 50%. Figure 4: Performance Gain of Eliminating Duplicate Logic and Overwritten Logic

References

1] https://llvm.org/.

2] https://www.snort.org/.

3] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and A. Akella. Paving the way for NFV: Simplifying middlebox modifi- cations using statealyzr. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), pages 239-253, Santa Clara, CA, 2016. USENIX Association.

[4] A. Saadaoui, H. Benmoussa, A. Bouhoula, and A. Kalam. Automatic classification and detection of snort configuration anomalies - a formal approach. pages 27-39, 01 2015.

[5] W. Wu, Y. Zhang, and S. Banerjee. Automatic synthesis of nf models by program analysis. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks, HotNets *16, pages 29-35, New York,
NY, USA, 2016. ACM.

