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Introduction
Background Contributions:
Network functions (NFs) are critical components 1n the network data plane. Show the existence of redundant logic in NFs in the scenario of

Their efficiency 1s important to the whole network’s end-to-end performance. DevOps.
And a lot of works recognize this critical efficiency 1ssue and propose the
corresponding optimization, such as accelerating the NF execution,
parallelizing NF (chains), and consolidating NFs. A recent trend of DevOps
inspires us to propose an orthogonal approach — using the operation-time
configurations to optimize NF programs.

* Design compiler-based solutions called NFOpt to eliminate the
redundant logic.

* Evaluation NFOpt on commodity NFs and platform NFs
completely.
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