
NFOpt: Eliminating Redundant Logic in NF Programs
using Operation-Time Configurations

Bangwen Deng, Wenfei Wu
IIIS, Tsinghua University

Introduction

[1] https://llvm.org/.
[2] https://www.snort.org/.
[3] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and A. Akella. Paving the way for NFV: Simplifying middlebox modifi- cations using statealyzr. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), pages 239–253, Santa Clara, CA, 2016. USENIX Association.
[4] A. Saadaoui, H. Benmoussa, A. Bouhoula, and A. Kalam. Automatic classification and detection of snort configuration anomalies - a formal approach. pages 27–39, 01 2015.
[5] W. Wu, Y. Zhang, and S. Banerjee. Automatic synthesis of nf models by program analysis. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks, HotNets ’16, pages 29–35, New York,
NY, USA, 2016. ACM.

NFOpt Overview

Background
Network functions (NFs) are critical components in the network data plane.

Their efficiency is important to the whole network’s end-to-end performance.
And a lot of works recognize this critical efficiency issue and propose the
corresponding optimization, such as accelerating the NF execution,
parallelizing NF (chains), and consolidating NFs. A recent trend of DevOps
inspires us to propose an orthogonal approach — using the operation-time
configurations to optimize NF programs.

Contributions:
• Show the existence of redundant logic in NFs in the scenario of

DevOps.
• Design compiler-based solutions called NFOpt to eliminate the

redundant logic.
• Evaluation NFOpt on commodity NFs and platform NFs

completely.

Figure 1: NFOpt Overview

Eliminating three kinds of NF redundant logic：
• Unused Logic.

• Duplicate Logic.
• Overwritten Logic.

Taking as input:
• NF Source Code,
• NF Configuration
• Identified Variables

and Actions

Program Analyzing Techniques:
• Constant Propagation & Expression Fold
• Dead Code Elimination
• Common Sub-expression Elimination
• Copy Propagation
• Symbolic Execution
• Program Slicing

Evaluation

Figure 2: Eliminate Unused Layer Logic Performance Gain of OpenNetVM-FW(left), Snort (middle), Suricata (right)

Source	
Code	

Action

Variables

Extract	Packet	
Processing	Logic One	Single	NF

Multiple	NFs

Eliminate
Redundant Logic

Configured	
Rules	

Unused Logic Redundancy
• Unused Layer Redundancy

The throughput of the two IDSes and the firewall
increase significantly. (e.g., 15% for Snort, 21% for
OpenNetVM-Firewall, 15%-10× and 40% to 3× for
Suricata in single-thread mode and multi-thread mode,
respectively)

• Unused Protocol Redundancy
When the proportion of UDP packets increases to

50%, removing the redundancy can achieve 40% and
2.5× performance gain for Snort and Suricata,
respectively. In OpenNetVM-Firewall, configurations
are embedded in code, the compiler would apply some
optimizations before we apply NFOpt, the performance
gain is moderated.

Duplicated Logic Redundancy
The Duplicated Logic elimination can help improve
throughout by more than 25% for monitor and Snort
IDS chain, and improve throughout by nearly 55% for
the two OpenNetVM-Firewall instances.

Overwritten Logic Redundancy
After the elimination of the Overwritten Logic

elimination Optimized program can achieve about 7%
performance gain in both case when UDP proportion
reaches to 50%.

64 128 256 512 1024 1500
Packet Size(bytes)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

T
hr

ou
gh

pu
t(

M
pp

s) Original Optimized

64 128 256 512 1024 1500
Packet Size(bytes)

0

2

4

6

8

10

T
hr

ou
gh

pu
t(

M
pp

s) Original Optimized

64 128 256 512 1024 1500
Packet Size(bytes)

0

500

1000

1500

2000

2500

3000

T
hr

ou
gh

pu
t(

K
pp

s)

Original(Single-thread)

Optimized(Single-thread)

Original(Multithread)

Optimized(Multithread)

0 10 20 30 40 50
UDP Packets Proportion(%)

0

1

2

3

4

5

T
hr

ou
gh

pu
t(

M
pp

s) Original Optimized

0 10 20 30 40 50
UDP Packets Proportion(%)

0

2

4

6

8

10

T
hr

ou
gh

pu
t(

M
pp

s) Original Optimized

0 10 20 30 40 50
UDP Packets Proportion(%)

0

200

400

600

800

1000

T
hr

ou
gh

pu
t(

K
pp

s) Original Optimized(Single-thread)

0 10 20 30 40 50
UDP Packets Proportion(%)

0

2

4

6

8

10

Th
ro

ug
hp

ut
(M

pp
s) Mon–Snort

Mon+Snort
Mon+Snort-Con
Mon+Snort-Opt

0 10 20 30 40 50
UDP Packets Proportion(%)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Th
ro

ug
hp

ut
(M

pp
s) Fw–Fw

Fw+Fw
Fw+Fw-Con
Fw+Fw-Opt

Figure 3: Eliminate Unused Protocol Logic Performance Gain of OpenNetVM-FW(left), Snort (middle), Suricata (right)

Figure 4: Performance Gain of Eliminating Duplicate Logic and Overwritten Logic

References

