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NFOpt Overview

Background
Network functions (NFs) are critical components in the network data plane.

Their efficiency is important to the whole network’s end-to-end performance.
And a lot of works recognize this critical efficiency issue and propose the
corresponding optimization, such as accelerating the NF execution,
parallelizing NF (chains), and consolidating NFs. A recent trend of DevOps
inspires us to propose an orthogonal approach — using the operation-time
configurations to optimize NF programs.

Contributions:
• Show the existence of redundant logic in NFs in the scenario of

DevOps.
• Design compiler-based solutions called NFOpt to eliminate the

redundant logic.
• Evaluation NFOpt on commodity NFs and platform NFs

completely.

Figure 1: NFOpt Overview 

Eliminating three kinds of NF redundant logic：
• Unused Logic.

• Duplicate Logic.
• Overwritten Logic.

Taking as input:
• NF Source Code,
• NF Configuration
• Identified Variables

and Actions

Program Analyzing Techniques:
• Constant Propagation & Expression Fold 
• Dead Code Elimination 
• Common Sub-expression Elimination
• Copy Propagation 
• Symbolic Execution
• Program Slicing

Evaluation

Figure 2: Eliminate Unused Layer Logic Performance Gain of OpenNetVM-FW(left), Snort (middle), Suricata (right)
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Unused Logic Redundancy
• Unused Layer Redundancy

The throughput of the two IDSes and the firewall
increase significantly. (e.g., 15% for Snort, 21% for
OpenNetVM-Firewall, 15%-10× and 40% to 3× for
Suricata in single-thread mode and multi-thread mode,
respectively)

• Unused Protocol Redundancy
When the proportion of UDP packets increases to

50%, removing the redundancy can achieve 40% and
2.5× performance gain for Snort and Suricata,
respectively. In OpenNetVM-Firewall, configurations
are embedded in code, the compiler would apply some
optimizations before we apply NFOpt, the performance
gain is moderated.

Duplicated Logic Redundancy
The Duplicated Logic elimination can help improve
throughout by more than 25% for monitor and Snort
IDS chain, and improve throughout by nearly 55% for
the two OpenNetVM-Firewall instances.

Overwritten Logic Redundancy
After the elimination of the Overwritten Logic

elimination Optimized program can achieve about 7%
performance gain in both case when UDP proportion
reaches to 50%.
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Figure 3: Eliminate Unused Protocol Logic Performance Gain of OpenNetVM-FW(left), Snort (middle), Suricata (right)

Figure 4: Performance Gain of Eliminating Duplicate Logic and Overwritten Logic
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