
Symbolic Execution for Network Functions with
Time-Driven Logic

Harsha Sharma
harshasha256@gmail.com

Indian Institute of Technology Roorkee

Wenfei Wu
wenfeiwu@tsinghua.edu.cn

Tsinghua University

Bangwen Deng
dbw18@mails.tsinghua.edu.cn

Tsinghua University

ABSTRACT

Symbolic Execution is a commonly used technique in
network function (NF) verification, and it helps network
operators to find implementation or configuration bugs before
the deployment. By studying most existing symbolic execution
engine, we realize that they only focus on packet arrival based
event logic; we propose that NF modeling language should
include time-driven logic to describe the actual NF implemen-
tations more accurately and performing complete verification.
Thus, we define primitives to express time-driven logic in NF
modeling language and develop a symbolic execution engine
NF-SE that can verify such logic for NFs for multiple packets.
Our prototype of NF-SE and evaluation on multiple example
NFs demonstrate its usefulness and correctness.

I. INTRODUCTION

Network Functions (NF) are a family of software widely
deployed in networks for the purpose of security (firewall,
NAT, IPS/IDS), performance (proxy), improving bandwidth
consumption (WAN optimizers) and management (load bal-
ancer, rate limiter, packet/byte counter). Network function
virtualization (NFV) allows deployment of network functions
without any change in the physical infrastructure, and eases
the network management (handling software rather than hard-
ware). Software NFs are widely deployed which makes it
important for the network operators to verify their correctness
before deploying them to production networks (avoiding run-
time outage) and network researchers have proposed several
verification solutions for NFs [1], [2], [3].

Symbolic execution for network functions (NFs) is a
promising verification technique that can statically explore
all possible runtime execution paths and generate concrete
input test traffic to test all possible valid execution paths.
It plays an important role in various network management
applications, including network verification [4], configuration
validation, and network testing [5], [2], [6]. Existing NF
symbolic execution solutions use a domain specific language
(DSL) to describe NF behaviors (i.e., model) and inject sym-
bolic packets to execute the NF model and generate concrete
test packets from these symbolic packets with constraints on
their header fields. [4], [2], [6].

Harsha Sharma was an intern at Tsinghua University when this project
started. Wenfei Wu is the corresponding author. This project is supported
by National Natural Science Foundation of China Grant No. 61802225 and
Turing AI Institute of Nanjing.

The expressiveness of a DSL decides whether an NF model
can be used to represent its actual implementation. Most of
the existing symbolic execution solutions assume NF logic
is triggered by the packet arrival events, however, we realize
that a variety of stateful NFs contain another kind of logic
— time-driven logic, where NF states depends on the elapsed
time. Without considering this kind of logic, existing symbolic
execution engines (SEE) actually execute on a snapshot of
the NF, and could lead to false negative/positive results. For
example, a stateful firewall with state expiration would reject
long-term inactive flow, but the existing SEE predicts the flow
to pass through.

In this work, our goal is to extend the existing NF DSL with
time-driven logic, enhancing the symbolic execution engine to
execute this kind of logic and generating concrete test traffic
from symbolic execution. We first study the implementation
and application of time-driven logic in existing NFs, and
summarize three primitives for expressing such logic. These
include a data structure for time value, a function call to
get the present time, and a timer to schedule a future event.
Then we build a symbolic execution engine for NF models
in the enhanced DSL. The SEE processes the packet-driven
logic in NF model by exploring all valid execution paths. For
time driven logic, it adds timing constraints for packet arrival
and timer events. We use these abstract symbolic packets to
construct concrete test traffic for the purpose of active testing.

We name our solution NF-SE, and prototype it. Our eval-
uation shows that NF-SE can verify NFs with time-driven
logic, correcting the false positive/negative results of NF
verification without time-driven logic. The performance of
NF-SE (execution time) is acceptable for several typical NFs
(specifically, state-expiration NFs (Section V)); for other NFs
(counter-attenuation NFs, (Section V)) NF-SE is not very
efficient (still usable) and we suggest ways to optimize the
execution time (Section VII-B)).

II. BACKGROUND AND MOTIVATION

Symbolic Execution on NFs is used for verifying the
correctness of NFs , and existing symbolic execution solutions
need to consider time-driven logic for a more precise result.

A. NF Symbolic Execution

In individual NF verification, exploring all the execution
paths helps in finding out implementation or configuration
errors [7], [6]; in network-wide NF verification [5], [4],

mailto:harshasha256@gmail.com
mailto:wenfeiwu@tsinghua.edu.cn
mailto:dbw18@mails.tsinghua.edu.cn

combining individual NF execution paths with the network
topology information helps to reason about network-wide
behaviors (e.g., reachability, isolation, etc).

Symbolic execution is a widely used method to infer NF
execution paths. It statically executes instructions in NF code
using symbolic packet, forks for each conditional branch,
keeps a track of constraints on each branch, and outputs ab-
stract input packet for each valid path satisfying all constraints
on that path. Concrete test traffic is then generated from
these abstract input packets and the behaviour of data plane
is tested by injecting this concrete test traffic. This is called
active testing [5]. Some of the paths in network function code,
depends on previous packets arrived i.e. the histories over
multiple packets (e.g prior established connections). To verify
such paths, we need to inject multiple symbolic packets, such
that the packets are injected sequentially after the execution
of previous packets is completed.

Applying general symbolic execution engine (e.g.,KLEE
[8]) directly on NF code would cause (unnecessary)
path explosion, causing intolerable execution times
and network irrelevant path constraints. For example,
sprintf(ip_str, "%d.%d.%d.%d", ip >> 24 %
256, ip >> 16 % 256, ip >> 8 % 256, ip %
256) would cause 34 branches, because each 8-bit segment
can be 1 or 2 or 3 digits when printed to string in decimal.
But in NF specific verification, these branches hardly reflect
meaningful network semantics. Thus, symbolic execution
is usually performed on NF models which are specified by
a domain specific language, called NF modeling language.
SymNet [2], BUZZ [5], VMN [4], Kinetic [9] and Vera
[6] are examples of such symbolic execution engines with
domain specific languages.

B. Time-Driven Logic in NFs

The correctness of the symbolic execution results depends
on it’s fidelity whether the NF behavior model represents the
real NF program (i.e., the code). In most of the existing NF
symbolic execution work, it is assumed that NF logic is driven
by packet arrival events, i.e., the arrival of a packet triggers a
series of instructions that processes the packet and updates the
NFs internal states. But we observe that there exists another
kind of logic — time-driven logic — in NF programs.

Time-driven logic includes the logic that is triggered by
timing events and the logic where timing information is
utilized for packet processing. We formally define the basic
programming primitives for time-driven logic in (Section III).
In practice, many NFs contain time-driven logic; for example,
a NAT would store established address mapping between inter-
nal addresses and external addresses and expire the states after
some time, a rate limiter (e.g., leaky bucket algorithm) needs
to accumulate “budget” with time and consume the budget
by sending packets, and a stateful firewall would preserve the
information of valid flows and expire the information after a
threshold time.

Example. We use a simplified stateful firewall as a running
example in this paper. Fig. 1 shows the basic logic of the

1 s t a t e = CLOSE ;
2 f o r e a c h p a c k e t {
3 i f (syn p a c k e t) {
4 s t a t e =OPEN;
5 p a s s ;
6 }
7 e l s e i f (s t a t e == OPEN) {
8 p a s s ;
9 }

10 e l s e {
11 drop ;
12 }
13 }

Fig. 1: Pseudocode of a stateful firewall

1 s t a t e = CLOSE ;
2 timer(30s, handler);
3 void h a n d l e r () { % Time−Driven Logic
4 i f (s t a t e == OPEN &&
5 cur rT ime ()−Modif ied >=30) {
6 s t a t e =CLOSE ;
7 }
8 }
9 f o r e a c h p a c k e t {

10 i f (syn p a c k e t) {
11 s t a t e =OPEN;
12 p a s s ;
13 Modified=currTime(); % Time−Driven
14 }
15 e l s e i f (s t a t e == OPEN) {
16 p a s s ;
17 Modified=currTime(); % Time−Driven
18 }
19 e l s e {
20 drop ;
21 }
22 }

Fig. 2: Pseudocode of a stateful firewall with state expiration

firewall — the SYN packet of a TCP flow punches a hole in
the firewall, and all subsequent packets from internal host A to
external host B are allowed; without the SYN packet, any other
packets are dropped by the firewall. In the implementation, a
state variable “state” is used to record whether a SYN packet
has arrived, and has a value either “CLOSE” or “OPEN”. This
state can also be used to allow traffic from the external host
B to internal host A.

While in previous NF active testing solutions, a stateful
firewall is represented in this way (Fig. 1)[10], the practical
implementation usually contains another kind of logic —
the state would expire after a certain amount of time if no
packet arrives during that time. If no packet has arrived for
some threshold time, the state would return to “CLOSE”,
meaning further communication requires a preceding SYN
packet to again reopen the connection. Fig. 2 shows such an
implementation: a timer would be triggered to check the state
refreshment, if no packet arrives for a threshold time period,
the state is reset to “CLOSE”.

Without modeling such time-driven logic in NF models, the
symbolic execution results could possibly mismatch the actual

Basic types and expression
const c ::= (0|1)+

header field h ::= sip|dip|sport|dport|proto|...
state s

variable var
expression e ::= c|h|s|var|e|Expr Op(e1, e2, ...)

Predicates
flow predicate xf , yf ::= ε| ∗ |h = c|¬xf |xf ∧ yf |xf ∨ yf
state predicate xs, ys ::= ∗|Rel Op(s, e)|¬xs|xs ∧ ys|xs ∨ ys

general predicate x, y ::= Rel Op(e1, e2, ...)|¬x|x ∧ y|x ∨ y
Policies and Statements

flow policy pf , qf ::= h := e|pf ; qf
state policy ps, qs ::= s := e|ps; qs

general policy p, q ::= q := e|p; q
Model

model model ::= stmts
statements stmts ::= stmt|stmt; stmts
statement stmt ::= p|if

if statement if ::= if (x){(stmts} else {stmts}

Fig. 3: NF-SE language syntax (following SNAP and
NetKAT[12][11])

NF behaviors and this may cause false negatives (i.e., reporting
unsafe behaviors as safe): in the stateful firewall example
(Fig. 2), the actual firewall may stop a flow due to its long-term
inactiveness, but due to lack of time-driven logic modeling, the
symbolic execution engine would not verify such logic and
report pass for such flows. There may also be false positives
(i.e., report safe behaviors as unsafe); for example, in a SYN
flood detection NF, SYN packets are recorded in a counter, and
the counter attenuates with time, if the attenuation time period
(time-driven logic) is not considered in the verification, all
SYN packets in a long-time period would be falsely reported
as bursty SYN flood attack.

Goal. Thus, our goal in this paper is to complement NF
modeling language with easily verifiable time-driven logic,
build a symbolic execution engine for NFs with time-driven
logic, and show a few applications where such a complement
improves NF verification results.

III. MODELING TIME-DRIVEN LOGIC

We summarize primitives to express time-driven logic, and
add them to the NF modeling language.

A. NF Modeling Language

We summarize NF modeling language from several existing
solutions [2], [11], [4] , and its syntax is shown in the figure
3. This language has the following features :
• Syntax. The language contains variables and constants as

basic operands, and commonly used operators such as
arithmetic (+, −, ∗, /, %), relational (>, <, ! =, ==),
boolean (&&, ||, !), bitwise (&, |, <<, >>) and indexing
([]) operators. Operands and operators together compose
expressions. An NF program consists of simple statements
such as assignments and complex statements of branching
(if-else-then).

• Semantics. In the language, the semantics of expressions fol-
low their mathematical definitions, an assignment statement

means to set the value of the left-hand symbol to be that of
the right-hand expression, and a branching statement means
if the condition is true, execute the if branch, otherwise
execute the else branch. The whole program executes each
state sequentially from the beginning to the end.

• NF Programming Abstractions. Specifically, a few variables
and expressions are summarized and defined as keywords,
which expresses NF semantics. In the syntax above, all
symbols derived from “header fields” are variables with
special meaning, denoting correlating packet header fields;
the index operator with a field (e.g., f[sip]) stands for
parsing a packet and fetching the field; and states are set
variables that are created, retrieved, and updated by flows
(e.g., counter[f]++). These NF programming abstrac-
tions (1) simplify the NF model representation (avoiding
tedious implementation) and (2) avoid path explosion in later
symbolic execution (see (Section II)).

• Loop-freedom. The NF-SE language does not contain loop
statement (e.g., while, for). The reason is that symbolic
execution needs to statically find all execution paths, but a
loop with an unpredictable number of execution times might
cause the path search to not terminate. Most of the existing
network verification solutions make the same assumption
[4], [2] , and many NF development frameworks use loop-
free program structures (e.g., match-action table in SDN,
stateful match-action table in Microsoft VFP [13]).

B. Adding Time-driven Logic

We studied the time-driven logic in typical NFs such as
stateful firewall, rate limiter, and intrusion detection systems
and summarize the following primitives to express time-driven
logic.
• timevalue is a data structure to store time. It can

be a timestamp or a time interval. In NF-SE language,
timevalue is a used as a variable or constant.

• currentTime() would return the timestamp of the cur-
rent time.

• timer(TIME_INTERVAL, HANDLER, ARGS) is a
function call, which schedules the timer logic in HANDLER
with arguments of ARGS at a future time TIME_INTERVAL
from now.
Execution Model. Among the three primitives,

timevalue and currentTime() are variables and
a function call that can be embedded into the NF-SE
language (as operands or an operator), but timer() needs
special notation. Usually the semantics of “triggering some
logic at some time” is maintained by a timing framework
(e.g., callout timer in early Linux or timing wheel [14]), and
the timing framework executes in parallel with the original
logic. The two parallel processes usually interact with each
other by operating on the shared variables, and there are three
execution models :
1) Preemption. Whenever the timer() is triggered, it inter-

rupts the current process and preempts the control flow;
after the HANDLER is completed, the control flow returns
to original execution location before preemption.

2) Concurrency. Both the timer() and the current process
executes simultaneously; if there are critical sections (e.g.,
shared variables) in both processes, concurrency control
mechanisms such as locking or mutex are needed.

3) Sequential. The current process pauses periodically and
checks whether timer() is triggered; if yes, the
HANDLER executes to complete, and then the process
resumes.

In NF specific domain, we have the following observations
and assumptions, which leads us to choose the sequential
execution model for NF-SE.
1) The packet process and timing process share critical NF

states. The timing process usually updates these states and
indirectly influences packet processing (e.g., the “state” in
Fig. 1, the “token” in Fig. 4).

2) The timing process usually does not operate on packets
directly but on NF states. Because packet arrival events
are independent of the time elapsed, and it is difficult to
execute the HANDLER logic on the packet once packets are
not in the packet processing pipeline. 1

3) If an NF uses parallel execution model for timing process
and packet process, we assume it has correct concurrency
control on shared states. For example, in Fig. 2, expiring
the state by timer and checking the state of a packet should
have concurrency control (e.g., locks or mutex).

By the first observation, NF-SE excludes preemption model;
and by the third assumption, a correct parallel model should be
logically equivalent to a sequential execution of two processes.
Thus, NF-SE assumes the sequential execution of timing
process and packet process, i.e., when a packet is processed,
timer() events are temporarily masked and after the packet
processing is completed, the timer events are checked and if
there are triggered events, the HANDLER is executed. This
assumption also complies with the actual implementation (e.g.,
P4 rate limiter [15]).

The stateful firewall example in Fig. 2 follows the syntax,
and we also show another example of a rate limiter (leaky
bucket algorithm) (Fig. 4). It maintains a token variable to
record the budget to send packets. Sending packets would
consume the token until token is zero and if the token is less
than the size of the packet, the packet is dropped; the token
is refreshed periodically by a timer.

IV. SYMBOLICALLY EXECUTE TIME-DRIVEN LOGIC

In the symbolic execution engine, we use static analysis
and constraint solver Z3 to verify packet-driven logic [16]. For
time-driven logic, we treat the three primitives as variables and
add extra timing constraints (such as constraints of execution
order in the time domain). We assume the timestamps of
incoming packets to be monotonically increasing and add
constraints such as timestamp of the packet 2 is greater than
timestamp of packet 1 and construct abstract packets with such
constraints.

1It is possible that timer() triggers packet generation. We categorize this
kind of logic to be a control plane message, and is not in the scope of the
data plane verification tool NF-SE.

1 i n t t o k e n = 1000 ;
2 t i m e r (1 s , h a n d l e r) ;
3 void h a n d l e r () {
4 t o k e n =1000;
5 t i m e r (1 s , h a n d l e r) ;
6 }
7 f o r e a c h p a c k e t {
8 i f (token<f [s i z e]) {
9 drop ;

10 }
11 e l s e {
12 token−=f [s i z e] ;
13 p a s s ;
14 }
15 }

Fig. 4: Psedudocode of a rate limiter

A. Packet-driven Logic

Packet arrival would trigger the NF to execute a series
of instructions to process it. With the assumption of loop-
freedom, the execution is unidirectional from packet input to
packet output or drop.

Our symbolic execution engine, NF-SE injects symbolic
packets, and statically analyzes all execution paths. NF-SE
maintains a trace of instructions, which is organized as a
tree; starting from the packet input, it sequentially adds each
instruction to the trace: simple assignment instructions would
be added to the trace linearly and sequentially (growing
the tree by one child), but for a branching instruction (i.e.,
if-else) , the trace tree branches into two children — one
further goes to the positive branch (recording the condition of
the if statement) and the other goes to the negative branch
(recording the negation of the condition). And finally, the static
analysis would arrive at the end of the model, exploring all
possible paths in the input NF.

A constraint solver solves each path and if the path’s
constraints are satisfiable, the solver would output an example
of symbolic packet/packets that satisfies all constraints on the
valid path.

We made an optimization to delete the trace tree nodes along
with its children if branching at that node creates unsatisfiable
path. In this way, the static analysis would not explore along
that path. This reduces the size of trace tree and thus, execution
time for SMT solver to check invalid branches. So, our trace
tree only contains valid execution paths for different input
packets.

For multiple packets execution, we recursively create and
execute different possible paths of trace tree depending on the
number of packets required, updating the state variables and
placing constraints from previous path execution, and finally
outputting all possible execution cases of multiple packets.

B. Time-driven Logic

When NF-SE parses an NF model and builds the trace
tree, it integrates constraints from the timing primitives. (1) In
NF models, timestamps (implemented by timevalue) are
usually associated with a variable (e.g., the timestamp when a

“packet” is received, the timestamp when a “state” is updated).
A timestamp’s initial value is set the same as the beginning
time of the variable’s lifetime. As NF-SE builds the trace tree,
constraints on timestamp initialization are added to the path.
For example, the 2nd packet’s timestamp is always greater
than the 1st packet, thus, constraint pkt1[ts]<pkt2[ts]
is added to the path.

(2) Timestamps may appear in assignments and conditional
constraints (e.g., last modified time is within 30s in Fig. 2),
and are treated the same as other variables and constraints.

(3) currentTime() returns a timevalue of the current
time; NF-SE adds a declaration of a new timestamp variable
to replace currentTime(), and similarly adds constraints
that this new timestamp is greater than its previous neighbor-
ing timestamp assuming timestamp for incoming packets are
increasing in nature.

(4) When timer(TIME, HANDLER, ARGS) is “called”
to invoke an event in the future time, NF-SE declares a
timestamp to record the current time and a constraint which
records an association of the timer and handler with this
timestamp (for the execution in the future).

(5) When NF-SE gets to a timer(TIME, HANDLER,
ARGS) execution, it first adds a timestamp (e.g., t1) of
current time (as well as its constraints), extracts the timestamp
when this timer is ”called” (assume t0), and then makes two
branches: one with the assumption that the event is triggered
(with the constraint t1-t0>=TIME) and the other that not
(with the constraint t1-t0<TIME). The former branch would
first proceed with HANDLER which is analyzed as packet
processing (like (1), (2), and (3)) and then to the next packet;
the latter branch proceeds to process the next packet directly.

(6) There may be multiple timer events after one packet is
processed, and they are organized as a queue and symbolically
executed similarly as (5). In some cases, the handler of a timer
may invoke another timer. NF-SE adds the new invoked timer
to the end of the queue.

We add an assumption to avoid infinite loops — the number
of recursive invocations from one timer handler to another is
bounded. Several practical observations support this assump-
tion, (1) most recursive timer events are idempotent (i.e multi-
ple execution is equivalent to one execution; examples are state
expiration); (2) variables that periodically and monotonically
change usually have a threshold (e.g., rate limiter’s token is
accumulated to the burst size and does not change any more).

V. IMPLEMENTATION

We use Antlr[17] to build a parser (247 lines of code in
Java) for the NF-SE language syntax, which parses an NF
model and builds a trace tree. We create a symbolic execution
engine using Z3 SMT solver[18], which has 1600+ lines of
code in C++.

We implement 14 NFs from existing literature[11], [19],
[12], and add time-driven logic to 5 of them; we show
the models of NFs with and without time-driven logic in
appendix[20]. Time-driven logic usually exists in two formats
in these NFs: state expiration and counter attenuation. Stateful

firewalls usually has state expiration, such as the firewall in
Fig. 2 and TCP 3-way handshake checking firewall and TCP
retransmission timeout. Counter attenuation usually exists in
rate limiters and intrusion detection systems (IDS), such as su-
per spreader detector (SSD), heavy hitter detector (HHD)[11],
[21], and SYN flood detector.

VI. EVALUATION

Our experiments are conducted on a quad-core, Intel i3
laptop with 8 GB RAM. We show that NF-SE can correctly
verify NFs’ execution paths, and we measure the execution
time taken by our SEE.

A. Functional Validation

In experiment results, we observe that NF-SE overcomes
the false positive/negative issues mentioned in section II. It
generally outputs more data paths (with more constraints)
for time-driven NFs as compared to NFs without time-driven
logic.

Case Study: IDS. In an intrusion detection system, if
the packet rate (Packet Per Second, PPS) is not high, i.e.,
the time gap between two consecutive packets is high, then
the network should not be assumed under attack/abuse. NF-
SE could explore such execution paths where if the two
consecutive packets timestamp difference exceeds a threshold
limit, then counter is multiplied by a ratio less than 1 to
decrease the counter, preventing a false positive of marking
this scenario as an attack.

Case Study: Stateful Firewall. We show an example of
verifying the NF in Fig. 2. In table I , we list some of the
possible packet traces of several execution paths, however, due
to space limitation, we only show the first two packets. We can
see that path 3 is the case when there is no state expiration and
the second packet gets through and path 4 is the case when the
state expires and the second packet is dropped. Thus, NF-SE
can overcome the false negative case in section II .

1 2 3 4
No. of packets

10

20

30

40

50

No
. o

f c
on

st
ra

in
ts

 in
 a

 p
at

h

Stateful firewall

Fig. 5: No. of constraints vs no. of input packets for stateful
firewall example

We compare the number of execution paths between stateful
firewall with and without time-driven logic in Fig. 5 and 6.

TABLE I: Packet trace on some execution paths in the stateful firewall

Execution Path 1 Execution Path 2 Execution Path 3 Execution Path 4 ...
packet index 1 2 ... 1 2 ... 1 2 ... 1 2 ... -

packet SYN SYN - SYN SYN - SYN !SYN - SYN !SYN - -
timestamp(s) 1.123456 2.123456 - 1.123456 30.123456 - 1.123456 2.123456 - 1.123456 30.123456 - -

state CLOSE OPEN - CLOSE CLOSE - CLOSE OPEN - CLOSE CLOSE - -
state transition OPEN OPEN - OPEN OPEN - OPEN OPEN - OPEN CLOSE - -

action pass pass - pass pass - pass pass - pass drop - -

1 2 3 4
No. of packets

10

15

20

25

30

35

40

No
. o

f c
on

st
ra

in
ts

 in
 a

 p
at

h

Stateful firewall without timer logic

Fig. 6: No. of constraints vs no. of input packets for stateful
firewall example not containing any time-driven logic

In both the figures, the x-axis denotes the number of packets
processed by the NF (which is given as an input to SEE), and
the y-axis shows the number of constraints in different paths
for processing those packets; each path has several constraints,
and the vertical bar shows that min-25%-50%-75%-max of
the number of constraints of all paths when the NF processes
a certain packet. We note the following observations: first,
the number of constraints increases almost linearly with the
number of packets, as we recursively travel the trace tree for
multiple number of packets; second, NFs with time-driven
logic have more constraints because of the additional time-
driven logic, e.g., median 42 v.s. 32 when processing the 4-th
packet; third, the additional constraints for time-driven logic
in stateful firewall are not very significant, but this depends
on the complexity of the time-driven logic in the NF.

B. Overhead

We make extensive evaluation on the overhead of verifying
time-driven logic. Fig. 7 shows the execution time to verify
NFs with time-driven logic, Fig. 8 shows execution time for
NFs without time-driven logic, and Fig. 9 shows the number
of branches (execution paths) for NFs with time-driven logic.
We have the following observations.

First, we see that NFs with state expiration (stateful firewall)
takes less verification time as compared to NFs with counter
attenuation. For example, to symbolically execute 2 packets,
firewall takes about 10s, and HHD takes about 100s. Because
“state” variables are usually of enumeration type and have less
branching choices, but “counter” variables are usually integers,

whose value space can be very large. For example, an HHD
with a threshold of 100 needs 100 symbolic packets to reach
the state transition.

Second, the total execution time can be estimated by the
product of the number of branches and the constraint solving
time of each branch. More than 96% of the time is consumed
in solving constraints using Z3; the branching factor (i.e., the
number of execution paths) increases exponentially with the
number of input packets, while the number of constraints on
each execution path increases linearly with number of input
packets.

Third, adding time-driven logic to NFs causes extra over-
head; the overhead is acceptable for state-expiration NFs but
is quite significant for counter-attenuation NFs. The difference
of the overhead for these two types of NFs is caused by the
size of the value space for states (usually enumerations) and
counters (usually integers).

VII. DISCUSSION

A. Application Scenarios

We discuss how to use NF-SE to explore all execution paths
of NFs with time-driven logic, and use the execution paths to
correct the false positives/negatives in previous SEE solutions.
The individual NF verification can be extended to more NFs,
e.g., off-path services such as DNS and DHCP.

Active Testing Trace Generation. There is a trend to
apply model-centric programming in both the networking
and software engineering community [9], [4], [2], [22], [23],
[24], [11], [25]. In model-centric programming, developers use
modeling language to describe the software (NF in our case)
behaviors and use compilers to translate the model to runnable
code. We similarly use NF models to generate execution
paths and symbolic packets to exercise those path, then these
symbolic abstract packets are translated to actual packet traces;
with the compiled code and the packet trace, active testing
can be conducted by injecting the concrete packet traces to
deployed NFs for verifying the correctness of both the model
and the compiler implementation.

Verifying NFs for flows with statistical properties. Tra-
ditional NF verification tools answer queries like “Can a flow
A get through an NF B with configuration C ?” While NF-
SE adds time-driven logic and can give detailed answers like
“When flow A gets through an NF B, X% packets would be
dropped depending on timestamps of each packet in flow”.

Verifying network-wide invariants. With NF-SE, verifica-
tion of multiple NFs along with network topology information
will help to reason about the network’s end-to-end behavior.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
No. of packets

10 1

100

101

102

103

Ti
m

e
in

 s
(lo

g
sc

al
e)

PAN FW
SSD
HHD
SYN Flood
Rate limiter

Fig. 7: Total execution time, varying the
no. of packets

1.0 1.5 2.0 2.5 3.0 3.5 4.0
No. of packets

100

101

Ti
m

e
in

 s
(lo

g
sc

al
e)

PAN FW
SSD
HHD
SYN Flood
Rate limiter

Fig. 8: Total execution time for NFs
without time-driven logic

1.0 1.5 2.0 2.5 3.0 3.5 4.0
No. of packets

101

102

103

No
. o

f b
ra

nc
he

s (
lo

g
sc

al
e)

PAN FW
SSD
HHD
SYN Flood
Rate limiter

Fig. 9: No. of execution paths, varying
no. of packets

In such network-wide verification, adding time constraints
between NFs can mimic their different processing speed, so
that more runtime possibilities can be explored.

B. Optimization Directions.

The evaluation above reveals a few optimization directions.
(1) Define a traffic equivalent class (EC) and solve constraints
for one EC, which avoids repeatedly solving constraints for
each packet instance in the same EC. There are three dimen-
sions to define an EC: flow space, data path space, and state
space. All packets in one EC should be in the same flow
(could be a group according to the packet filter rules), go
through the same data path, and operate on the same state
variables. For example, in HHD and SSD with a threshold
of 100 packets, all execution paths other than the case for
exceeding the threshold can be verified using 3-4 packets. For
solving the execution path in which threshold exceeds, we can
use the constraint solving result of one packet for 100 packets
EC, and the corresponding action takes place for 100th packet.

(2) For timing constraints, we could group a few packets and
use one timestamp intervals for the group and execute timer
between groups, which reduces the number of timing con-
straints on each execution path. This sampling-like estimation
is a tradeoff between the result precision and the execution
efficiency.

VIII. RELATED WORK

Individual NF Verification. Software network functions
have large code base, and applying verification techniques
such as symbolic execution on large NF implementations
results into state explosion because its complexity increases
exponentially with number of match action entries. Works such
as Vera [6] and P4V [26] target P4 programs and find bugs
such as parsing/deparsing errors, invalid memory accesses,
loops and tunneling errors. Whereas NF-SE complements them
with time-driven logic.

Network-wide Verification/Testing. Network verification
is a combination of topology discovery and individual NF be-
havior exploration for verifying chains of NFs in the network.
Existing solutions [5], [2], [4], [27], [28], [26] employ model
checking techniques which involve creating behaviour models

of NFs assuming some oracles or context dependent policies,
and applying symbolic execution on these models to systemat-
ically explore all possible execution paths of the system. NF-
SE can enhance network-wide verification by providing more
precise and correct behavior models and adding network-wide
timing constraints.

Emulating NFs’ processing in discrete time steps is another
approach to explore NFs’ behaviors in time domain (and the
verification is described by linear temporal logic)[4]. NF-SE
could accelerate this process by using timing constraints to
represent multiple discrete time steps.

Another set of works focus on control plane verification[29],
[30], and Kinetic[9] verifies network configuration changes,
whereas NF-SE provides more precise data plane behaviors.
SLA-Verifier [31] focuses on verifying performance metrics,
which is another domain. Alembic [32] automatically infers
behavioral models of stateful NFs viewed as an ensemble
of finite-state machines. It injects input packets at constant
interval for each NF and does not verify the temporal effects
and cases where output packets depend on histories of previous
input packets.

Time Related Logic. Varanus [33] is a network monitoring
solution with “timeout” semantics, whereas NF-SE is a generic
NF modeling and SEE. Kinetic [9] verifies the controller
programs against user-specified computation tree logic (CTLs)
whereas NF-SE facilitates active testing by generating concrete
test traffic.

IX. CONCLUSION

We built NF-SE, a symbolic execution solution for NFs with
time-driven logic. NF-SE includes a DSL with time-driven
logic primitives to model NF behaviors and a SEE to explore
all the execution paths of the model. Our prototype of NF-
SE and evaluation on 5 NFs shows that NF-SE can be used
to verify the implementation and configuration of individual
NFs; and we show how NF-SE complements and corrects
false positives/negatives in existing NF symbolic execution
solutions. We also show the potential application scenarios
and optimization directions for NF-SE.

REFERENCES

[1] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’12. USA: USENIX Association, 2012, p. 9.

[2] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “Symnet:
Scalable symbolic execution for modern networks,” in Proceedings of
the 2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16. New
York, NY, USA: ACM, 2016, pp. 314–327. [Online]. Available:
http://doi.acm.org/10.1145/2934872.2934881

[3] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” in Proceedings of the
ACM SIGCOMM 2011 Conference, ser. SIGCOMM ’11. New York,
NY, USA: Association for Computing Machinery, 2011, p. 290–301.
[Online]. Available: https://doi.org/10.1145/2018436.2018470

[4] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker,
“Verifying reachability in networks with mutable datapaths,” in
Proceedings of the 14th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’17. Berkeley, CA, USA:
USENIX Association, 2017, pp. 699–718. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3154630.3154687

[5] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar,
“Buzz: Testing context-dependent policies in stateful networks,”
in Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation, ser. NSDI’16. Berkeley, CA,
USA: USENIX Association, 2016, pp. 275–289. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2930611.2930630

[6] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu,
“Debugging p4 programs with vera,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: ACM, 2018, pp. 518–532.
[Online]. Available: http://doi.acm.org/10.1145/3230543.3230548

[7] M. Dobrescu and K. Argyraki, “Software dataplane verification,”
in Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 101–114. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616448.2616459

[8] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 209–224. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855756

[9] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable dynamic network control,” in 12th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
15), 2015, pp. 59–72.

[10] D. Joseph and I. Stoica, “Modeling middleboxes,” Netwrk. Mag. of
Global Internetwkg., vol. 22, no. 5, p. 20–25, Sep. 2008. [Online].
Available: https://doi.org/10.1109/MNET.2008.4626228

[11] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“Snap: Stateful network-wide abstractions for packet processing,” in
Proceedings of the 2016 conference on ACM SIGCOMM 2016 Con-
ference. ACM, 2016, pp. 29–43.

[12] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” Acm sigplan notices, vol. 49, no. 1, pp. 113–126, 2014.

[13] D. Firestone, “VFP: A virtual switch platform for host SDN in the
public cloud,” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). Boston, MA: USENIX
Association, Mar. 2017, pp. 315–328. [Online]. Available: https://www.
usenix.org/conference/nsdi17/technical-sessions/presentation/firestone

[14] G. Varghese and T. Lauck, “Hashed and hierarchical timing wheels:
Efficient data structures for implementing a timer facility,” 1996.

[15] Y. He and W. Wu, “Fully functional rate limiter design on programmable
hardware switches,” in Proceedings of the ACM SIGCOMM 2019
Conference Posters and Demos, ser. SIGCOMM Posters and Demos
’19. New York, NY, USA: ACM, 2019, pp. 159–160. [Online].
Available: http://doi.acm.org/10.1145/3342280.3342344

[16] S. Khurshid, C. S. Păsăreanu, and W. Visser, “Generalized symbolic
execution for model checking and testing,” in Proceedings of the
9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, ser. TACAS’03. Berlin,

Heidelberg: Springer-Verlag, 2003, pp. 553–568. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1765871.1765924

[17] “https://www.antlr.org/.”
[18] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-

national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[19] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, pp. 263–297, 2000.

[20] “Appendix with nf models code.” [Online]. Available: https://www.
dropbox.com/s/7i9s4um35d4ecyp/

[21] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
ACM Sigplan Notices, vol. 46, no. 9, pp. 279–291, 2011.

[22] H. Huang and W. Wu, “Nfd: Using behavior models to develop cross-
platform nfs,” 08 2019, pp. 153–155.

[23] K. Gao, T. Nojima, and Y. R. Yang, “Trident: toward a unified sdn
programming framework with automatic updates,” in Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 386–401.

[24] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park, “mos: A
reusable networking stack for flow monitoring middleboxes,” in 14th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 17), 2017, pp. 113–129.

[25] G. Liu, Y. Ren, M. Yurchenko, K. Ramakrishnan, and T. Wood,
“Microboxes: high performance nfv with customizable, asynchronous
tcp stacks and dynamic subscriptions,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
2018, pp. 504–517.

[26] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé,
H. Wang, C. Caşcaval, N. McKeown, and N. Foster, “P4v: Practical
verification for programmable data planes,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: ACM, 2018, pp. 490–503.
[Online]. Available: http://doi.acm.org/10.1145/3230543.3230582

[27] A. Wang, L. Jia, C. Liu, B. T. Loo, O. Sokolsky, and P. Basu, “Formally
verifiable networking,” 2009.

[28] K. Alpernas, R. Manevich, A. Panda, M. Sagiv, S. Shenker, S. Shoham,
and Y. Velner, “Abstract interpretation of stateful networks,” in Interna-
tional Static Analysis Symposium. Springer, 2018, pp. 86–106.

[29] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “Tiramisu: Fast
and general network verification,” arXiv preprint arXiv:1906.02043,
2019.

[30] A. Gember-Jacobson, C. Raiciu, and L. Vanbever, “Integrating verifica-
tion and repair into the control plane,” in Proceedings of the 16th ACM
Workshop on Hot Topics in Networks. ACM, 2017, pp. 129–135.

[31] Y. Zhang, W. Wu, S. Banerjee, J.-M. Kang, and M. A. Sanchez, “Sla-
verifier: Stateful and quantitative verification for service chaining,” in
IEEE INFOCOM 2017-IEEE Conference on Computer Communications.
IEEE, 2017, pp. 1–9.

[32] S.-J. Moon, J. Helt, Y. Yuan, Y. Bieri, S. Banerjee, V. Sekar, W. Wu,
M. Yannakakis, and Y. Zhang, “Alembic: automated model inference
for stateful network functions,” in 16th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 19), 2019, pp.
699–718.

[33] T. Nelson, N. DeMarinis, T. A. Hoff, R. Fonseca, and S. Krishnamurthi,
“Switches are monitors too! stateful property monitoring as a switch
design criterion,” in Proceedings of the 15th ACM Workshop on
Hot Topics in Networks, ser. HotNets ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 99–105. [Online].
Available: https://doi.org/10.1145/3005745.3005755

http://doi.acm.org/10.1145/2934872.2934881
https://doi.org/10.1145/2018436.2018470
http://dl.acm.org/citation.cfm?id=3154630.3154687
http://dl.acm.org/citation.cfm?id=2930611.2930630
http://doi.acm.org/10.1145/3230543.3230548
http://dl.acm.org/citation.cfm?id=2616448.2616459
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1109/MNET.2008.4626228
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/firestone
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/firestone
http://doi.acm.org/10.1145/3342280.3342344
http://dl.acm.org/citation.cfm?id=1765871.1765924
https://www.dropbox.com/s/7i9s4um35d4ecyp/
https://www.dropbox.com/s/7i9s4um35d4ecyp/
http://doi.acm.org/10.1145/3230543.3230582
https://doi.org/10.1145/3005745.3005755

	Introduction
	Background and Motivation
	NF Symbolic Execution
	Time-Driven Logic in NFs

	Modeling Time-Driven Logic
	NF Modeling Language
	Adding Time-driven Logic

	Symbolically Execute Time-Driven Logic
	Packet-driven Logic
	Time-driven Logic

	Implementation
	Evaluation
	Functional Validation
	Overhead

	Discussion
	Application Scenarios
	Optimization Directions.

	Related Work
	Conclusion
	References

