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ABSTRACT
Network functions (NFs) are critical components in the network

data plane. Their efficiency is important to the whole network’s end-

to-end performance. We identify three types of runtime redundant

logic in NFs when they are deployed with concrete configured

rules. We propose to use compiler techniques (e.g., program slicing,

constant propagation, dead code elimination, symbolic execution)

to optimize away the redundancy.We implement a prototype named

NFReducer using LLVM. Our evaluation on two IDSes shows that

after eliminating the redundant logic, the packet processing rate of

the two IDSes can be significantly improved.
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1 INTRODUCTION
Virtualized network functions (NFs) are software appliances that

process all traversing network traffic in the data plane. Thus, their

efficiency in flow processing affects the whole network’s end-to-

end performance in a significant way (e.g., latency accumulation,

throughput bottleneck). However, we find that when an NF is de-

ployed with concrete configured rules, it may conduct more than

necessary packet processing logic, which consequently causes nega-

tive effects on its performance (e.g., wasting CPU cycles, increasing

memory usage) and further impacts the whole network.

In this paper, we define redundant logic in an NF as the piece of

code whose execution does not influence the correctness of the NF’s
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packet processing. And such redundant logic usually happens when

an NF is configured with concrete runtime rules. We propose to take

an NF instance’s configured rules into account and leverage classic

compiler optimization techniques to eliminate the redundant logic.

Our proposed technique is orthogonal to the existing solutions that

either accelerate individual NFs [26, 40] or parallelize/consolidate

multiple NFs [15, 21, 23, 33, 35, 43].

The essential reason for the redundant logic is the mismatch of

the protocol space in the development and that in the deployment.

Network protocols are organized in a layered stack (e.g., layer-3,
layer-4), with multiple protocol options (e.g., TCP, UDP) at each
layer. And NF developers might try to cover a large protocol space

in the NF code for completeness [29]. However, in the runtime

deployment, NF operators might only configure a subspace of the

entire protocol space due to the requirements (e.g., cloud tenant

filtering away some traffic [17]). If the incoming packets exercise

extra protocols in the NF code than the configuration, the redundant

processing will happen.

To eliminate such redundancy and to improve NF’s performance,

we prototype a tool named NFReducer, which follows three steps.

First, NFReducer identifies the packet processing logic using pro-

gram slicing so that the unrelated logic (e.g., logging) could be

excluded. Second, within an individual NF, NFReducer injects the

NF configurations into its variables and applies constant propaga-

tion, constant folding, and dead code elimination to remove the

redundant logic. In this step, we overcome a challenge where an

NF may have infeasible paths which disable the identification of

some redundant logic. We apply symbolic execution [16, 19, 34]

to filter out the infeasible paths. Finally, when multiple NFs are

chained, we consolidate them and leverage NFReducer to eliminate

the redundant logic. In this case, the cross-NF redundancy (e.g.,
late drop, duplicated parsing [15, 21, 23]) can be eliminated. In the

cross-NF optimization, if the NF execution is a run-to-completion

mode [20, 32], the optimized NF can be deployed directly; otherwise

(pipeline mode) [42], the optimized NF needs to be decomposed

back to multiple NFs.

We do not regard that NF developers should be blamed for the

redundant logic. Indeed, all features and functionalities in an NF

program come from a combination of various factors, such as his-

torical evolvement, development tools, and market requirements.

Supporting rich features helps an NF to take over a larger market

share. In practice, when the development and operation of NF (i.e.,
DevOps) are jointly considered (e.g., NF infrastructure vendors like
cloud providers and enterprise network constructors delivering

solutions), a tool like NFReducer would be useful to improve the

network performance, and it should be applied between the phases

of development and deployment.

We implement NFReducer using LLVM [25], a widely used com-

piler infrastructure. We use two IDSes (Snort [10] and Suricata [11])

https://doi.org/10.1145/3373360.3380832
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1 / ∗ One example S n o r t r u l e :
2 drop t c p 1 0 . 0 . 0 . 0 / 2 4 any −> 1 0 . 1 . 0 . 0 / 2 4 any
3 ∗ /
4 s t ruc t {

5 unsigned long s ip , d ip ;

6 unsigned short spo r t , dpo r t ;

7 . . .

8 } ne t ;

9 void main ( ) {

10 LoadRules ( ) ;

11 while ( 1 ) {

12 pkt = . . . / / g e t a p a c k e t
13 DecodeEthPkt ( pkt ) ; / / d e c o d e a p a c k e t
14 ApplyRules ( ) ; / / match r u l e s
15 } }

16 void DecodeEthPkt ( u_char ∗ pkt ) {

17 DecodeIPPkt ( pkt ) ;

18 }

19 void DecodeIPPkt ( u_char ∗ pkt ) {

20 ne t . d ip = . . .

21 ne t . s i p = . . .

22 ne t . p r o t o c o l = . . .

23 l og ( ne t . s ip , ne t . d ip , ne t . p r o t o c o l ) ;

24 i f ( ne t . p r o t o c o l == TCP )

25 DecodeTCPPkt ( pkt ) ;

26 e l se i f ( ne t . p r o t o c o l == UDP)

27 DecodeUDPPkt ( pkt ) ;

28 e l se i f ( . . . ) { . . . }

29 }

30 void DecodeTCPPkt ( u_char ∗ pkt ) {

31 ne t . dpo r t = . . .

32 ne t . s p o r t = . . .

33 l og ( ne t . spo r t , ne t . dpo r t ) ;

34 }

35 void DecodeUDPPkt ( u_char ∗ pkt ) {

36 ne t . dpo r t = . . .

37 ne t . s p o r t = . . .

38 l og ( ne t . spo r t , ne t . dpo r t ) ;

39 }

40 void ApplyRules ( ) {

41 while ( . . . ) { / / i t e r a t e each r u l e r
42 i f ( MatchRule ( r ) ) {

43 Act ion ( ) ;

44 return ;

45 } } }

46 in t MatchRule ( Rule ∗ r ) {

47 i f ( r−> s i p != ne t . s i p ) return 0 ;

48 i f ( r−>d ip != ne t . d ip ) return 0 ;

49 i f ( r−>p r o t o c o l != ne t . p r o t o c o l ) return 0 ;

50 i f ( r−> s p o r t != ne t . s p o r t ) return 0 ;

51 i f ( r−>dpor t != ne t . dpo r t ) return 0 ;

52 return 1 ;

53 }

Figure 1: Snort code (simplified)

to evaluate NFReducer. Our evaluation results show that NFRe-

ducer can significantly improve the packet processing rate of the

two IDSes. In total, we make the following three contributions.

• We show the existence of the redundant logic in NF programs

and categorize the redundant logic.

• We propose to apply classic compiler techniques to eliminate the

redundant logic and prototype our idea by building NFReducer.

• Our experiments validate the existence of the redundant logic

and the performance benefits after eliminating it.

2 BACKGROUND
This section uses Snort [10] as an example to illustrate the three

types of redundant logic and discusses the related compiler tech-

niques used by NFReducer for eliminating the redundancy.

2.1 A Motivating Example
Figure 1 shows the simplified code of Snort. After started, Snort

loads the configured rules (line 10) and executes the packet process-

ing loop (lines 11–15). The loop handles an incoming packet in each

iteration through two steps. First, it decodes the packet (line 13) and

saves the extracted header information in the global structure net.
Second, the loop conducts rule matching (line 14) by comparing the

header information (saved in net) with each configured rule (lines

41–45). If a rule is matched (i.e., function MatchRule() returning
1), the corresponding action is taken (line 43), and all the following

rules are skipped (line 44).

From this example, we observe that whether a computation (or

parsing) result is used or has effects later may depend on runtime

configurations. If a computation result is not used, its correspond-

ing computation operations become redundant logic. In total, we

identify three types of redundant logic in Figure 1. The first two

types are within one single NF, and the last one is across multiple

NFs.

First, all NF logic designed for a protocol layer may be redundant

(type-I ). For example, if all rules use “any” to match arbitrary port

numbers (e.g., line 2), no matter what port number an incoming

packet has, its port number always match all configured rules, and

the conditions at line 50 and line 51 are always false (i.e., matched).

Therefore, the port number decoding (e.g., lines 31–32, lines 36–37)
is redundant and can be eliminated to save CPU cycles.

Second, the logic for a particular protocol option may be re-

dundant (type-II ). For example, if the Snort code in Figure 1 is

configured to only process TCP packets, all UDP packets would

be ignored — the condition at line 49 would always be true for

them (i.e., not matched). The port number of incoming UDP packets

would not influence rule matching results since line 50 and line

51 are never executed for the UDP packets. Therefore, the com-

putation to decode port numbers for UDP packets inside function

DecodeUDPPkt() is unnecessary and can be removed.

Third, the computation conducted by a previous NF may become

redundant due to the configured rules of another NF deployed at a

later stage (type-III ). For example, if an active flowmonitor deployed

before a Snort instance who blocks UDP packets, all the parsing and

counting for UDP packets in the monitor is redundant. If multiple

NFs form a chain, consolidating all on-path NFs [15, 21, 33] can

transform the Type-III redundancy into the type (type-I and type-II )
within one single NF.

In this paper, we build a tool named NFReducer to identify and
eliminate redundant logic in NF programs. We propose to use pro-

gram instructions as the granularity instead of modules [15, 23, 33].

There are two reasons. First, not all commodity NFs are built by

chaining modules, and module-level redundancy elimination tech-

niques cannot cover all NFs (e.g., Figure 1). Second, instruction-level
analysis has the potential to conduct fine-grained elimination and

achieve better performance.

2.2 Compiler Techniques
Program Analysis Techniques.We leverage several classic com-

piler techniques in NFReducer. We briefly describe them below.
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Figure 2: The Architecture of NFReducer
Constant Propagation. If a variable’s value is assigned (or defined)

by an instruction using a constant value, then between the as-

signment and the next re-assignment on the execution flow, the

variable’s usage can be replaced by the constant.

Constant Folding. If an instruction’s result can be computed at

compile time, all usages of the result can be replaced with the

computed value during compilation.

Dead Code Elimination. If the execution of an instruction does not

influence anything in the following execution flow (e.g., its com-

puted value never used), the instruction can be eliminated.

Program Slicing. Starting from an instruction and one of its operands

(i.e., a criterion <instruction, variable>), program slicing can find

all successor instructions with computation influenced by the crite-

rion (i.e., forward slicing), and all predecessor instructions whose

computation influences the criterion (i.e., backward slicing) [38].

Symbolic Execution. After marking inputs as symbolic variables,

symbolic execution collects execution condition for each program

path and then generates concrete inputs that can lead the path to

be executed or validates the path is infeasible [16, 19, 34].

Compiler Infrastructure. LLVM is a compiler infrastructurewidely

used in programming languages, software engineering, and systems

communities to build different techniques [25]. All the previously

mentioned program analysis techniques have existing implementa-

tions under LLVM. Thus, we also build NFReducer using LLVM to

fast prototype our idea.

3 NFREDUCER DESIGN
An overview of NFReducer’s architecture is shown in Figure 2.

NFReducer takes the source code of NFs and the user-labeled NF

actions and critical variables as its input. It first extracts the packet

processing logic (§3.2) and then refers to configurations to eliminate

the redundancy, including that within one single NF (§3.3) and that

across multiple NFs (§3.4).

3.1 NFReducer Input Labeling
The current version of NFReducer takes user-labeled critical vari-

ables and NF actions as its inputs. In the future, we will enhance

NFReducer by building static analysis routines to identify the la-

beled information automatically.

Critical Variables. Intuitively, an NF program relies on a loop struc-

ture to process packets as a stream. We name the loop structure as

the packet processing loop (e.g., lines 11–15 in Figure 1). Inspired by

the previous work [24], we divide an NF program’s variables that

influence how packets are handled into three categories, packet

variables, state variables, and config variables, based on how the

variables are used in the packet processing loop. Packet variables

and state variables are important to identify the NF actions, while

config variables are the key to eliminate the redundancy.

An NF’s packet processing loop uses a received packet to over-

write a packet variable (e.g., pkt at line 12 in Figure 1) at the begin-

ning of each iteration and refers to the variable’s value to conduct

the remaining computation in the same iteration. NFReducer users

can identify packet variables of an NF by searching network I/O

functions and labeling their return values or referenced arguments.

Stateful NFs leverage state variables to maintain information

across packets. How a packet is processed depends on the current

values of state variables [22, 24]. State variables can be labeled by

examining each variable used in the packet processing loop to check

whether the variable satisfies the following conditions. First, it is

not a local variable of the packet processing loop. Second, its value

is modified in the packet processing loop. Third, its value influences

how to handle incoming packets.

In the runtime, before an NF handles packets, configurations are

loaded into config variables (e.g., all fields of parameter r of func-
tion MatchRule() in Figure 1). A config variable has the following

features. Its value is generated during parsing configuration files

(or command line), it is used in the packet processing loop, and its

value is not changed in the loop.

NF Actions. After receiving a packet, an NF can take external ac-

tions by replying or forwarding packets. It can also take internal

actions by updating its state variables. NFReducer users can identify

the external actions by searching the network I/O functions used

to send packets (e.g., function Action() at line 43 in Figure 1) and

localize the internal actions by inspecting where the state variables

are updated.

3.2 Packet Processing Logic Identification
Before eliminating the redundant logic, we first extract the packet

processing logic from each analyzed NF for two reasons. First, re-

moving functionalities unrelated to packet processing can improve

an NF’s performance. Second, some compiler techniques applied

later (e.g., symbolic execution) have scalability issues on the whole

NF program, and only focusing on packet processing logic can

enable NFReducer on large NFs.

Algorithm 1 shows the details of extracting the packet process-

ing logic. The algorithm takes labeled NF actions as inputs, applies

backward slices to search instructions whose execution can influ-

ence the execution of the labeled actions, and reports all searched

instructions as identified packet processing logic.

We recommend having the developers or operators involved to

decide whether to eliminate this kind of unrelated program logic.

The reason is twofold. First, some features (e.g., logging at line 33
in Figure 1) are key to debugging or testing. Although they do

not impact how incoming packets are processed, removing them

can increase the difficulty of understanding an NF’s behaviors.

Second, some logic may affect the correctness of an analyzed NF.

For example, synchronization operations (e.g., locks) provide thread
safety if an NF is configured to run with multiple threads, but they

are useless if there is only one thread.

3.3 Individual NF Optimization
We design an algorithm to optimize away redundant logic within

a single NF. The algorithm takes an NF’s packet processing logic
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a

Algorithm 1 Packet Processing Logic (PktProcLogic())

Require: NF Action Set acS and NF Source Code S
Ensure: Packet Processing Logic S’
1: function PktProcLogic(acS, S)
2: initialize code set CS = {}
3: for each instruction in acS do
4: CS = CS [ ProgramSlicing(instruction, S)
5: end for
6: S0  mergecode(CS)
7: return S0

8: end function

6

and configured rules as its input, eliminates Type-I and Type-II
redundancy, and outputs the optimized processing logic (Algorithm

2).

As the first step, the algorithm conducts constant folding and

constant propagation to replace config variables with the constant

values specified in the configured rules (line 2 in Algorithm 2).

Sometimes, an NF uses a loop to compare an incoming packet with

its configured rules (e.g., line 41–45 in Figure 1). In this case, the

algorithm unrolls the loop by cloning its loop body and functions

called from the loop n times, with n equal to the number of the

configured rules, and applies constant folding and propagation to

each cloned version by referring to the corresponding rule. For

example, if the Snort in Figure 1 is only configured with the rule at

line 2, the rule matching loop (lines 41–45) is changed to one clone

of the loop body. Function MatchRule() called in the loop is also

cloned. In the cloned version of MatchRule(), all config variables

are changed to values in the rule firstly (e.g., r->protocol at line
49 changed to TCP), and then constant folding is further conducted

(e.g., the condition at line 50 changed to false).
After this step, the type-I redundancy can be eliminated by apply-

ing dead code elimination. Take the Snort in Figure 1 as an example.

After replacing the two conditions at lines 50 and 51 with false,
there is no other place using port numbers. Thus, all the computa-

tion for port number decoding (e.g., lines 30–31, lines 36–37) is dead,
and the classic dead code elimination can identify the computation.

However, type-II redundancy cannot be removed by dead code

elimination right now. For example, if the Snort in Figure 1 is only

configured to match TCP packets with concrete port numbers, the

two conditions at lines 50 and 51 cannot be changed to false. Thus,
path-insensitive dead code elimination cannot eliminate any com-

putation about decoding port numbers. However, the decoding in

function DecodeUDPPkt() actually has no side effect and should

be eliminated, since if an incoming packet is in UDP, the condition

at line 49 is true, and the function MatchRule() returns before

the port numbers are used at lines 50 and 51. Actually, after chang-

ing r->protocol to TCP, line 26 → line 27 → line 36 → line 49

→ line 50 is an infeasible path, since if line 50 is executed, then

the incoming packet is in TCP, and lines 26, 27 and 36 cannot be

executed.

We leverage symbolic execution to filter out infeasible paths ef-

fectively.We extract all possible execution paths (line 4 in Algorithm

2). For each path, we conduct constant folding and propagation

(line 6), and then we leverage symbolic execution to judge whether

the path is feasible (lines 7–9). If it is feasible, we conduct dead code

a

Algorithm 2 Individual NF Optimization (NFOpt())

Require: Packet Processing Logic S, Configuration conf
Ensure: Optimized NF Code S’
1: function NFOpt(config, S)
2: S = apply config to S.
3: initialize code set CS = {}
4: paths = ExtractExecutionPath(S)
5: for each path p in paths do
6: p0  const fold propagate(p)
7: if SymbolicExecution(p0) is infeasible then
8: continue
9: end if

10: code dead code elimination(p0)
11: CS = CS[ code
12: end for
13: S0  mergecode(CS)
14: return S0

15: end function

6

elimination (line 10). We compute the union of all code left in each

feasible path and use the union as the optimized result.

3.4 Cross-NF Optimization
As we discussed in §2.1, we can consolidate multiple NFs into one

single NF to convert the redundancy across multiple NFs (type-III )
into that within one single NF (type-I and type-II ), so that we can

apply the algorithm in §3.3.

Specially, assuming multiple NFs are chained together, NFRe-

ducer first extracts the packet processing logic between the packet

receiving operation and the sending operation for each NF. NFRe-

ducer then merges the extracted logic into one program (NF’). Vari-

ables and functions in the extracted logic need to be renamed to

avoid conflicts. In the end, NFReducer applies the algorithm in §3.3

to generate the optimized version of NF’.

How to deploy the optimized version depends on the execution

model of the original NFs. If a run-to-completion model (i.e., multi-

ple NFs running as one single process) is used, the optimized version

of NF’ can be deployed directly as a single process. However, if

the original NFs are deployed in a pipeline model (i.e., multiple NFs

running as independent processes and chained by inter-procedure

I/O), NFReducer decomposes the optimized version of NF’ into

individual NFs to better utilize system resources (e.g., multi-core

processors, distributed systems). To decompose the optimized ver-

sion of NF’, NFReducer basically creates an optimized version for

each individual NF. Given an NF (NFi), NFReducer first computes

the intersection between the optimized version of NF’ and NFi’s
packet processing logic, and then use the intersection to replace the

original packet processing logic in NFi to generate an optimized

version for NFi. Operators can deploy the optimized version in the

same way as the original instance of NFi.

4 IMPLEMENTATION
We rely on several existing implementations of program analysis

to build NFReducer. We use the DG library [3] of Symbiotic [12] as

the program slicing discussed in §3.2. The slicing takes the tuples

of (instruction, instruction operand) as input. We use all the combi-

nations between the user-labeled NF actions and their operands as

input tuples.
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We implement a pass to clone the code when it is necessary and

replace the user-labeled config variables with corresponding con-

stant values in configured rules (§3.3). The existing implementation

of constant propagation only processes variables in primitive types

and does not consider structs. We enhance the existing implemen-

tation to enable constant propagation on struct fields when they

are used as config variables.

We use KLEE [16] as the symbolic execution engine. We config-

ure KLEE to only analyze NF code, without inspecting functions in

standard libraries.

5 EVALUATION
5.1 Experimental Setup
We implement NFReducer using LLVM-5.0.0. All our experiments

are conducted on a Linux workstation, with ten 1200MHz CPU

cores and 128GB memory.

Benchmarks. We select two IDSes (Snort-1.0 and Suricata-3.1) as

our benchmark programs. We choose them because their implemen-

tations cover a large protocol space, and it is easy to change their

configured rules. We use throughput (i.e., the number of processed

packets per second) as the performance metric.

Research Questions. Our experiments aim to validate whether

the redundant logic exists in read-world NFs and whether NFRe-

ducer can effectively eliminate the redundancy. Since whenever an

NF’s configured rules are changed, operators need to apply NFRe-

ducer to analyze the NF again. We want to measure how much

time the application of NFReducer costs to understand whether

NFReducer can be used in a production environment. Specifically,

our experiments are designed to answer the following two research

questions.

RQ1: what the performance improvement we can achieve after

applying NFReducer?

RQ2: how much operation overhead NFReducer incurs?

5.2 Experimental Results
We discuss how our experimental results answer the previous two

research questions as follows.

RQ1. Effectiveness.Wemeasure howmuch performance improve-

ment we can gain on Snort and Suricata after eliminating logic irrel-

evant to packet processing, type-I redundancy, type-II redundancy,
and type-III redundancy, respectively.
Packet Processing Logic. Figure 3 shows the performance gain af-

ter eliminating program logic unrelated to packet processing for

Snort (§3.2). We can achieve around 10× performance improvement

(i.e., from 0.56 Mpps to 5.75 Mpps). Among the unrelated logic,

logging each packet’s statistics is the most time-consuming. We do

not recommend removing all logging functionalities in NFs since

they are important for testing and debugging. However, our results

still confirm that NFReducer can precisely identify logic unrelated

to packet processing, and removing the logic sometimes can sig-

nificantly improve NFs’ performance. We also conduct the same

experiment for Suricata, but the performance gain is very small

(i.e., less than 1%).

As we discussed in §3.3, our redundancy elimination is applied

to packet processing logic so that all the following evaluations and

comparisons are conducted on the extracted packet processing logic

for Snort and Suricata.

Type-I Redundancy. Figure 4 and Figure 5 show the performance

improvement after eliminating type-I redundancy for Snort and

Suricata, respectively. The two NFs are only configured with layer-

3 rules. Snort only has a single-thread mode. Suricata has both

single-thread and multi-thread modes.

Two figures show that packet processing rates of the two ID-

Ses increase significantly. As packet size increases, the perfor-

mance gain is constant for Snort, but more performance gain can

be achieved for Suricata in the single-thread mode. The reason

is that Suricata inspects packets deeper in payload than Snort so

that Suricata conducts more redundant computation after config-

ured with layer-3 rules only. For Suricata in the multi-thread mode,

the performance gain increases firstly and then decreases. We will

identify the reason in the future. In summary, type-I redundancy
exists in both Snort and Suricata, and we can achieve a much better

performance after eliminating it.

Type-II Redundancy. Figure 6 and Figure 7 show the performance

gain after eliminating type-II redundancy for Snort and Suricata in

the single-thread mode. The two IDSes are configured with TCP

rules only. The results are straightforward — as the number of

UDP packets increases, the algorithm shows a larger performance

gain. When the proportion of UDP packets increases to 50%, re-

moving the redundancy can achieve 40% and 2.5× performance

gain for Snort and Suricata, respectively. These results show that

type-II redundancy can significantly impact NFs’ performance, and

NFReducer can effectively eliminate it.

Type-III Redundancy. To evaluate the performance gain after elim-

inating type-III redundancy, we add a monitor before a Snort in-

stance and configure the Snort with TCP rules only.We compare the

throughput under two settings. First, the monitor and the Snort ex-

ecute in two different processes, and they are chained in a pipeline

(“Mon–Snort” in Figure 8). Second, the monitor and the Snort are

consolidated together and optimized by NFReducer (“Mon+Snort”

in Figure 8). As shown in Figure 8, the consolidation and redun-

dancy elimination can help improve throughout by more than 30%,

and increasing the proportion of UDP packets can increase the per-

formance gain. Thus, type-III redundancy also exists when multiple

NFs are deployed together.

RQ2. Overhead. The overhead of NFReducer comes from two

aspects. First, we need users to label the critical variables and NF

actions. Second, when the configured rules of an NF are changed,

NFReducer needs to analyze the NF and rebuild the NF.

In total, Snort has 2 packet variables, 8 state variables, and 14

config variables. The numbers of the three variable types for Suri-

cata are 2, 4, and 19, respectively. One author of this paper identifies

all the variables in around one hour. An NF program only needs this

manual labeling once. When the NF’s configuration changes, the

labeling results can be reused by NFReducer. To sum up, we don’t

think the labeling process can incur a large operation overhead.

For Snort, the execution time to extract the packet processing

logic is 7.6s, and the execution time to eliminate redundancy in one

Snort instance is 26.8s. The optimized version needs 0.126s to be

built into an executable. NFReducer spends 1.2s and 83.6s to extract

the packet processing logic and remove redundancy for Suricata,
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Figure 3: Throughput of Snort after re-
moving irrelevant.
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Figure 4: Throughput of Snort after
eliminating type-I redundancy.
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Figure 5: Throughput of Suricata after
eliminating type-I redundancy.
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Figure 6: Throughput of Snort after
eliminating type-II redundancy.
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Figure 7: Throughput of Suricata after
eliminating type-II redundancy.

0 10 20 30 40 50
UDP Packets Proportion(%)

0

2

4

6

8

10

Th
ro

ug
hp

ut
(M

pp
s) Mon–Snort

Mon+Snort
Mon+Snort-Opt

Figure 8: Throughput of Snort after
eliminating type-III redundancy.

respectively. To build the optimized version, we need 2.753s. Since

an NF’s configured rules tend to be used for a long time (e.g., several
days), we think the execution time of NFReducer and the rebuilding

time are tolerable in real-world operation.

6 SCOPE OF USAGE
While we use two IDSes as examples to show the usage of NFRe-

ducer, we discuss the scope of NFReducer— what categories of NFs

can benefit from NFReducer. As discussed in §1, the redundancy is

caused by the runtime configuration exercising only a subspace of

network protocols in the NF code. Thus, NFReducer could improve

NFs that process a larger protocol space significantly, e.g., IDSes,
firewalls, and Deep Packet Inspectors (DPI). NFs that process a

single protocol could benefit less from NFReducer, e.g., TCP load

balancer, HTTP cache.

Even if NFReducer cannot benefit all NF categories, such a tool

is non-trivial in many DevOps scenarios. (1) Each NF category

contains many different NF variants (i.e., products and implementa-

tions). For example, both Snort [10] and Suricata [11] are IDSes, and

both PAN [7] and pfSense [8] are firewalls. NFReducer will improve

their runtime performance. (2) Many NFs synthesize several func-

tionalities (e.g., PAN and pfSense [7, 8] with NAT and firewall), and

use runtime configurations to turn them on/off. NFReducer could

be applied to them. (3) In a network, one NF would be deployed as

many instances, each of which has customized configurations. For

example, a public cloud may have each physical server installed its

own security rules (e.g., iptables [6] to filter traffic), and the rules

are customized by the tenant of each server. Using NFReducer to

automate the optimization of each instance is more applicable than

conducting manual optimization.

7 RELATEDWORK
NFReducer provides an approach to jointly considering NF devel-

opment and operation for better performance. In the current NF

development, NFs are developed either as individual legacy soft-

ware (e.g., load balancers, firewalls, NATs, caches, etc. [1, 2, 5, 8–11])

or in a development framework (e.g., libVNF [31], NetBricks [32]).

In the NF deployment, NFs are managed by control plane systems

such as OpenNetVM [42], ONOS [14], BESS [20], ClickOS [28],

OpenNF [18], libVNF [31], NEWS [30], OpenBox [15], and Net-

Bricks [32]. And NFReducer can improve the NF performance in

these development and deployment frameworks.

Existing works on NF performance acceleration fall into two

categories. They either accelerate the processing speed (e.g., us-
ing FPGA or GPU [4, 26, 36, 37, 40, 41]) or parallel the process-

ing [35, 43]. NFReducer is orthogonal to these solutions. It refines

the NF internal algorithm and reduces complexity. Microboxes [27]

is a framework that takes redundancy as inputs and eliminates

redundancy, while NFReducer can also identify redundancy.

Works like SNF [23], CoMB [33], OpenBox [15], and Speedy-

Box [21] also propose the idea of cross-NF redundant logic elimina-

tion. NFReducer is different from them by converting redundancy

across multiple NFs into redundancy within one NF. Works like

StatelessNF, StateAlyzr, and NFactor [13, 22, 24, 39] inspire the

packet processing logic identification in NFReducer.

8 CONCLUSION AND FUTUREWORK
We discover the problem that existing legacy NFs can be over-

engineered with runtime redundant logic. We propose a framework

named NFReducer to eliminate the redundancy in individual NFs

and cross NFs. NFReducer is built on program analysis techniques

to eliminate such redundancy. And the preliminary implementation

and evaluation show that NFReducer can improve the performance

of the two example NFs significantly.

We will enhance NFReducer from the following aspects. First, we

will complete and automate the whole workflow process. Second,

we will apply NFReducer to more NFs (for legacy individual NFs or

NFs in a development framework). Third, we will make complete

tests on NFReducer, including throughput, latency, optimization

overhead, etc.
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